拋物線C:y2=2px(p>0)的焦點(diǎn)為F,拋物線C上點(diǎn)M的橫坐標(biāo)為2,且|MF|=3.
(1)求拋物線C的方程;
(2)過(guò)焦點(diǎn)F作兩條相互垂直的直線,分別與拋物線C交于M、N和P、Q四點(diǎn),求四邊形MPNQ面積的最小值.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)利用拋物線的定義直接求拋物線C的方程;
(2)過(guò)焦點(diǎn)F作兩條相互垂直的直線,設(shè)MN:x=my+1,PQ:x=-
1
m
y+1(m≠0)
,聯(lián)立直線與拋物線方程組成方程組,利用弦長(zhǎng)公式,求出MN,PQ,推出四邊形MPNQ的面積的表達(dá)式,利用基本不等式求四邊形MPNQ面積的最小值.
解答: 解:(1)由已知:2+
P
2
=3 ∴P=3

故拋物線C的方程為:y2=4x…(4分)
(2)由(1)知:F(1,0)
設(shè)MN:x=my+1,PQ:x=-
1
m
y+1(m≠0)
…(6分)
x=my+1
y2=4x
得:y2-4my-4=0
∵△=16m2+16=16(m2+1)>0
|MN|=
1+m2
•4•
m2+1
=4(m2+1)
…(8分)
同理:|PQ|=4(
1
m2
+1)
…(10分).
∴四邊形MPNQ的面積:S=
1
2
|MN||PQ|=8(m2+1)(
1
m2
+1)
=8(m2+
1
m2
+2)≥32

(當(dāng)且僅當(dāng)m2=
1
m2
即:m=±1時(shí)等號(hào)成立)
∴四邊形MPNQ的面積的最小值為32.…(12分)
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程的求法,直線與拋物線的位置關(guān)系的應(yīng)用,四邊形面積的最值以及基本不等式的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓O與直線x+
3
y+2=0相切于點(diǎn)P,與x正半軸交于點(diǎn)A,與直線y=
3
x在第一象限的交點(diǎn)為B.點(diǎn)C為圓O上任一點(diǎn),且滿足
OC
=x
OA
+y
OB
,動(dòng)點(diǎn)D(x,y)的軌跡記為曲線Γ.
(1)求圓O的方程及曲線Γ的軌跡方程;
(2)若直線y=x和y=-x分別交曲線Γ于點(diǎn)A、C和B、D,求四邊形ABCD的周長(zhǎng);
(3)已知曲線Γ為橢圓,寫(xiě)出橢圓Γ的對(duì)稱軸、頂點(diǎn)坐標(biāo)、范圍和焦點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知離心率為
3
2
的橢圓C,其長(zhǎng)軸的端點(diǎn)A1,A2恰好是雙曲線
x2
3
-y2=1的左右焦點(diǎn),點(diǎn)P是橢圓C上不同于A1,A2的任意一點(diǎn),設(shè)直線PA1,PA2的斜率分別為k1,k2
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)試判斷乘積“k1•k2”的值是否與點(diǎn)P的位置有關(guān),并證明你的結(jié)論;
(3)當(dāng)k1=
1
2
,在橢圓C上求點(diǎn)Q,使該點(diǎn)到直線PA2的距離最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,F(xiàn)1,F(xiàn)2是雙曲線x2-y2=1的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),圓O是以F1F2為直徑的圓,直線l:y=kx+b與圓O相切,并與雙曲線交于A、B兩點(diǎn).
(Ⅰ)根據(jù)條件求出b和k的關(guān)系式;
(Ⅱ)當(dāng)
OA
OB
=k2+1
時(shí),求直線l的方程;
(Ⅲ)當(dāng)
OA
OB
=m(k2+1)
,且滿足2≤m≤4時(shí),求△AOB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線C:y2=4x焦點(diǎn)為F,直線l經(jīng)過(guò)點(diǎn)F且與拋物線C相交于A,B兩點(diǎn)
(Ⅰ)若線段AB的中點(diǎn)在直線y=1上,求直線l的方程;
(Ⅱ)若線段|AB|=20,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
x+
-x2+4x-3
2x
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x-y+1≥0
x+y≥0
x≤0
,則目標(biāo)函數(shù)z=x+2y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax-cos2x,x∈[
π
8
,
π
6
],若?x1∈[
π
8
,
π
6
],?x2∈[
π
8
,
π
6
],x1≠x2,
f(x2)-f(x1)
x2-x1
<0,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-1,1),
b
=(3,m),若
a
∥(
a
+
b
).則m=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案