設(shè)有一個回歸方程為
y
=2-3
x
,則變量x增加一個單位時( 。
A.y平均增加3個單位B.y平均增加2個單位
C.y平均減少3個單位D.y平均減少2個單位
∵-3是斜率的估計值,說明x每增加一個單位,y平均減少3個單位.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以下莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試的數(shù)學(xué)成績,乙組記錄中有一個數(shù)字模糊,無法確認(rèn).假設(shè)這個數(shù)字具有隨機(jī)性,并在圖中以a表示.
(1)若甲、乙兩個小組的數(shù)學(xué)平均成績相同,求a的值;
(2)求乙組平均成績超過甲組平均成績的概率;
(3)當(dāng)a=2時,分別從甲、乙兩組中各隨機(jī)選取一名同學(xué),設(shè)這兩名同學(xué)成績之差的絕對值為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知x,y之間的一組數(shù)據(jù),
x0123
y1357
則x,y的線性回歸方程必定過點(  )
A.(2,2)B.(1.5,0)C.(1,2)D.(1.5,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知x與y之間的一組數(shù)據(jù):(0,1),(1,3),(2,5),(3,7),則y與x的線性回歸方程必過點( 。
A.(2,4)B.(1.5,2)C.(1,2)D.(1.5,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知x,y的對應(yīng)取值如下表所示:
x0134
y2.74.85.37.2
從散點圖分析知,y與x成線性相關(guān),其線性回歸方程為
y
=0.95x+a,則a=( 。
A.3.85B.3.4C.3.1D.2.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

實驗測得四組(x,y)的值分別為(1,2),(2,3),(3,4),(4,4),則y與x間的線性回歸方程是( 。
A.y=-1+xB.y=1+xC.y=1.5+0.7xD.y=1+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一臺機(jī)器由于使用時間較長,生產(chǎn)的零件有一些會有缺損.按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下:
轉(zhuǎn)速x(轉(zhuǎn)/s)18161412
每小時生產(chǎn)有缺損零件數(shù)y(件)11975
(Ⅰ)作出散點圖;
(Ⅱ)如果y與x線性相關(guān),求出回歸方程;
(Ⅲ)如果實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為8個,那么機(jī)器運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
用最小二乘法求線性回歸方程的系數(shù)公式:
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n(
.
x
)
2
a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某種產(chǎn)品的廣告費支出額x與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)求y關(guān)于x的回歸直線方程;
(2)試預(yù)測廣告費支出為10萬元時,銷售額多大?
(參考公式:回歸直線方程a,其中b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-nx-2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲型H1N1流感傳染性很強(qiáng),假設(shè)在人群中的感染率為20%.現(xiàn)有Ⅰ、Ⅱ兩種疫苗,疫苗Ⅰ對8個健康的人進(jìn)行注射,最后結(jié)果為無一人感染.疫苗Ⅱ?qū)?5個健康的人進(jìn)行注射,最后結(jié)果為有一人感染.你認(rèn)為這兩種疫苗哪個更有效?

查看答案和解析>>

同步練習(xí)冊答案