精英家教網 > 高中數學 > 題目詳情
“a>1”是“對任意的正數x,不等式2x+
a
x
≥1
成立”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件
對任意的正數x,不等式2x+
a
x
≥1
成立?對任意的正數x,y=2x+
a
x
的最小值大于或等于1
∵x>0時,y=2x+
a
x
≥2
2x?
a
x
=2
2a

∴2
2a
≥1即 a≥
1
8

∴命題“對任意的正數x,不等式2x+
a
x
≥1
成立”的充要條件為a≥
1
8

∵{a|a>1}?{a|a≥
1
8
}
∴“a>1”是“對任意的正數x,不等式2x+
a
x
≥1
成立”的充分不必要條件
故選 B
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點,點列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構成以Bn為頂點的等腰三角形.
(Ⅰ)求證:對任意的n∈N*,xn+2-xn是常數,并求數列{xn}的通項公式;
(Ⅱ)問是否存在等腰直角三角形AnBnAn+1?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•上海模擬)已知點列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點,點列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構成以Bn為頂點的等腰三角形.
(1)證明:數列{yn}是等差數列;
(2)求證:對任意的n∈N*,xn+2-xn是常數,并求數列{xn}的通項公式;
(3)對上述等腰三角形AnBnAn+1添加適當條件,提出一個問題,并做出解答.(根據所提問題及解答的完整程度,分檔次給分)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x
4
+
1
12
上的點,點A1(x1,0),A2(x2,0),…An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構成以Bn為頂點的等腰三角形.
(Ⅰ)證明:數列{yn}是等差數列;
(Ⅱ)求證:對任意的n∈N*,xn+2-xn是常數,并求數列{xn}的通項公式;
(Ⅲ)在上述等腰三角形AnBnAn+1中是否存在直角三角形,若存在,求出此時a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年廣東省深圳市羅湖區(qū)高考數學精編模擬試卷(理科)(解析版) 題型:解答題

已知點列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線上的點,點列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構成以Bn為頂點的等腰三角形.
(Ⅰ)求證:對任意的n∈N*,xn+2-xn是常數,并求數列{xn}的通項公式;
(Ⅱ)問是否存在等腰直角三角形AnBnAn+1?請說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年高考數學精編模擬試卷(文科)(解析版) 題型:解答題

已知點列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線上的點,點列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構成以Bn為頂點的等腰三角形.
(Ⅰ)求證:對任意的n∈N*,xn+2-xn是常數,并求數列{xn}的通項公式;
(Ⅱ)問是否存在等腰直角三角形AnBnAn+1?請說明理由.

查看答案和解析>>

同步練習冊答案