3.?dāng)?shù)列{an}中,a1=2,an+1=2an-1,則a6=33.

分析 直接利用遞推關(guān)系式求解即可.

解答 解:數(shù)列{an}中,a1=2,an+1=2an-1,
可得a2=3,
a3=5,
a4=9
a5=17
a6=33.
故答案為:33

點(diǎn)評(píng) 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,由于求解數(shù)列的項(xiàng)數(shù)比較小,可以直接求解,否則需要求解通項(xiàng)公式,然后求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知M、N分別為四面體ABCD的面BCD與面ACD的重心,且G為AM上一點(diǎn),且GM:GA=1:3,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{AD}$=$\overrightarrow{c}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{BG}$,$\overrightarrow{BN}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=1+log2x(1≤x≤4),求函數(shù)g(x)=f2(x)+f(x2)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖所示,E是正方形ABCD所在平面外一點(diǎn),E在面ABCD上的正投影F恰在AC上,F(xiàn)G∥BC,AB=AE=2,∠EAB=60°.則以下結(jié)論中正確的有(1)(2)(4).
(1)CD⊥面GEF.
(2)AG=1.
(3)以AC,AE作為鄰邊的平行四邊形面積是8.
(4)∠EAD=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式x2+mx+n<0的解集為{x|-1<x<2},則m,n的值分別為( 。
A.1,2B.1,-2C.-1,2D.-1,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若P在Q的北偏東44°,則Q在P的( 。
A.東偏北46°B.東偏北44°C.西偏南44°D.南偏西44°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年蔬菜銷售收入50萬元.設(shè)f(n)表示前n年的純利潤總和(f(n)=前n年的總收入-前n年的總支出-投資額).
(Ⅰ)該廠從第幾年開始盈利?(盈利指的是純利潤總和要大于0)
(Ⅱ)該投資商計(jì)劃在年平均純利潤達(dá)到最大時(shí),以48萬元出售該廠.問:需多少年后其年平均純利潤才可達(dá)到最大,此時(shí)共獲利多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)計(jì)算:log3$\frac{\root{4}{27}}{3}$+lg25+lg4+${log_7}{7^2}$+log23•log34;
(2)設(shè)集合A={x|$\frac{1}{32}$≤2-x≤4},B={x|m-1<x<2m+1}.若A∪B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某學(xué)校閱覽室訂有甲,乙兩類雜志,據(jù)調(diào)查,該校學(xué)生中有70%閱讀甲雜志,有45%閱讀乙雜志,有22%兼讀甲,乙兩類雜志.求學(xué)生中至少讀其中一類雜志的概率?

查看答案和解析>>

同步練習(xí)冊(cè)答案