若關(guān)于x的方程2cos2x-sinx+a=0有實(shí)根,則a的取值范圍是
 
分析:根據(jù)已知方程表示出a,利用同角三角函數(shù)間的基本關(guān)系變形,利用二次函數(shù)的性質(zhì)及正弦函數(shù)的值域求出a的最大值與最小值,即可確定出a的范圍.
解答:解:已知方程變形得:2-2sin2x-sinx+a=0,
即a=2sin2x+sinx-2=2(sinx+
1
4
2-
17
8
,
∵-1≤sinx≤1,
∴當(dāng)sinx=-
1
4
時(shí),a取得最小值-
17
8
;
當(dāng)sinx=1時(shí),a取得最大值1,
則a的取值范圍是[-
17
8
,1].
故答案為:[-
17
8
,1].
點(diǎn)評:此題考查了同角三角函數(shù)間基本關(guān)系,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,1),
q
=(1,0),<
n
,
p
>=
π
2
m
n
=-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相異實(shí)根,求實(shí)數(shù)m的取值范圍;
(2)若向量
p
=(cosA,2cos2
C
2
),試求|
n
+
p
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•九江二模)已知函數(shù)f(x)=sin(
π
4
x-
π
6
)-2cos2
π
8
x+1,x∈R

(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程4f2(x)-mf(x)+1=0在x∈(
4
3
,4)
內(nèi)有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程2cos2(π+x)-sinx+a=0有實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量數(shù)學(xué)公式=(1,1),數(shù)學(xué)公式=(1,0),<數(shù)學(xué)公式,數(shù)學(xué)公式>=數(shù)學(xué)公式數(shù)學(xué)公式=-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+數(shù)學(xué)公式 )=數(shù)學(xué)公式 在[0,B]上有相異實(shí)根,求實(shí)數(shù)m的取值范圍;
(2)若向量數(shù)學(xué)公式=(cosA,2cos2 數(shù)學(xué)公式),試求|數(shù)學(xué)公式|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量
m
=(1,1),
q
=(1,0),<
n
,
p
>=
π
2
m
n
=-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相異實(shí)根,求實(shí)數(shù)m的取值范圍;
(2)若向量
p
=(cosA,2cos2
C
2
),試求|
n
+
p
|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案