【題目】某學(xué)校決定在主干道旁邊挖一個(gè)半橢圓形狀的小湖,如圖所示,AB=4,O為AB的中點(diǎn),橢圓的焦點(diǎn)P在對(duì)稱軸OD上,M、N在橢圓上,MN平行AB交OD與G,且G在P的右側(cè),△MNP為燈光區(qū),用于美化環(huán)境.
(1)若學(xué)校的另一條道路EF滿足OE=3,tan∠OEF=2,為確保道路安全,要求橢圓上任意一點(diǎn)到道路EF的距離都不小于,求半橢圓形的小湖的最大面積:(橢圓()的面積為)
(2)若橢圓的離心率為,要求燈光區(qū)的周長(zhǎng)不小于,求PG的取值范圍.
【答案】(1);(2).
【解析】
(1)由的長(zhǎng)求得的值.首先求出直線所在的直線方程,設(shè)出與此直線平行,且與半橢圓相切的直線方程,利用兩平行線間的距離求得相切直線的方程,代入橢圓方程利用判別式等于零求得的值.(2)根據(jù)橢圓的離心率和的值,利用求得的值,即求得橢圓方程,求得焦點(diǎn)的坐標(biāo).設(shè)出點(diǎn)的坐標(biāo),代入橢圓方程,由此寫出周長(zhǎng)的表達(dá)式,列不等式,解不等式可求得點(diǎn)橫坐標(biāo)的取值范圍,減去后得到的取值范圍.
(1)因?yàn)?/span>,所以直線的斜率為,
所以所在的直線方程為。
因?yàn)闄E圓上任意一點(diǎn)到道路的距離都小于,
所以橢圓最大面積時(shí)與一條平行于且距離為的直線相切,
設(shè)直線,
由兩條直線之間的距離為,所以,
解得或(舍棄)
設(shè)橢圓方程為,
由于得到
因?yàn)橹本與橢圓相切,所以,解得,
所以橢圓方程為,
所以橢圓分面積為。
(2)設(shè)橢圓方程為,
因?yàn)闄E圓的離心率為,所以,所以。
所以橢圓方程為
設(shè),則燈光區(qū)的周長(zhǎng)
由題意,
所以,所以
∴ ,
所以,即,
又因?yàn)?/span>在的右側(cè),所以,所以
所以的取值范圍是。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:x+2y﹣4=0與坐標(biāo)軸交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則經(jīng)過(guò)O、A、B三點(diǎn)的圓的標(biāo)準(zhǔn)方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)對(duì)定義域內(nèi)的任意x1 , x2 , 當(dāng)f(x1)=f(x2)時(shí),總有x1=x2 , 則稱函數(shù)f(x)為單純函數(shù),例如函數(shù)f(x)=x是單純函數(shù),但函數(shù)f(x)=x2不是單純函數(shù).若函數(shù) 為單純函數(shù),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊分別為a,b,c,且a+c=6,b=2,cosB= .
(1)求a,c的值;
(2)求sin(A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a>b>1,0<c<1,則( )
A.ac<bc
B.abc<bac
C.alogbc<blogac
D.logac<logbc
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: + =1的焦點(diǎn)在x軸上,A是E的左頂點(diǎn),斜率為k(k>0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA.
(Ⅰ)當(dāng)t=4,|AM|=|AN|時(shí),求△AMN的面積;
(Ⅱ)當(dāng)2|AM|=|AN|時(shí),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)= +ln( +x)+ cos xdx在區(qū)間[﹣k,k](k>0)上的值域?yàn)閇m,n],則m+n的值是( )
A.0
B.2
C.4
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求證二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)證明:在線段BC1上存在點(diǎn)D,使得AD⊥A1B,并求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com