分析 ①不等式等價于$\left\{\begin{array}{l}{x≤2}\\{3-x+2-x≥3\\;}\end{array}\right.$,或$\left\{\begin{array}{l}{2<x<3}\\{3-x+x-2≥3}\end{array}\right.$,或$\left\{\begin{array}{l}{x≥3}\\{x-3+x-2≥3}\end{array}\right.$,求出每個不等式組的解集,再取并集即得所求.
②原命題等價于-2-x≤a≤2-x在[1,2]上恒成立,由此求得求a的取值范圍.
解答 解:(1)當(dāng)a=-3時,f(x)≥3 即|x-3|+|x-2|≥3,即
$\left\{\begin{array}{l}{x≤2}\\{3-x+2-x≥3\\;}\end{array}\right.$,可得x≤1;
$\left\{\begin{array}{l}{2<x<3}\\{3-x+x-2≥3}\end{array}\right.$,可得x∈∅;
$\left\{\begin{array}{l}{x≥3}\\{x-3+x-2≥3}\end{array}\right.$,可得x≥4.
取并集可得不等式的解集為 {x|x≤1或x≥4}.
(2)原命題即f(x)≤|x-4|在[1,2]上恒成立,等價于|x+a|+2-x≤4-x在[1,2]上恒成立,
等價于|x+a|≤2,等價于-2≤x+a≤2,-2-x≤a≤2-x在[1,2]上恒成立.
故當(dāng) 1≤x≤2時,-2-x的最大值為-2-1=-3,2-x的最小值為0,
故a的取值范圍為[-3,0].
點(diǎn)評 本題主要考查絕對值不等式的解法,關(guān)鍵是去掉絕對值,化為與之等價的不等式組來解,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 2$\sqrt{2}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2}{9}$ | B. | -$\frac{1}{9}$ | C. | $\frac{2}{9}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | 1-$\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | 1-$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+2y+3=0 | B. | 2x+y+3=0 | C. | x-2y+3=0 | D. | 2x-y+3=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com