【題目】邊長(zhǎng)為1的正方形(及其內(nèi)部)繞的旋轉(zhuǎn)一周形成圓柱,如圖,長(zhǎng)為,長(zhǎng)為,其中與在平面的同側(cè).
(1)求二面角的大。唬ńY(jié)果用反三角函數(shù)值表示)
(2)用一平行于的平面去截這個(gè)圓柱,若該截面把圓柱側(cè)面積分成兩部分,求與該截面的距離;
(3)求線段,繞著旋轉(zhuǎn)所形成的幾何體的表面積.
【答案】(1) 二面角的大小為.
(2) 與該截面的距離為.
(3)表面積為.
【解析】
(1)先作出二面角的平面角,結(jié)合余弦定理即可計(jì)算;
(2)由圓柱的側(cè)面積等于周長(zhǎng)高,可知截面將圓柱分為等高的兩部分,即可將問題轉(zhuǎn)化為截面與圓的交線將圓周分成兩部分,即可求得弦心距,根據(jù)直線與平面平行,則線面的距離即為直線上任意點(diǎn)到平面的距離,進(jìn)一步求解即可;
(3)先分析旋轉(zhuǎn)體的形狀,即可求解.
(1)取中點(diǎn),連接,過點(diǎn)作交圓于點(diǎn),連接,如圖因?yàn)?/span>長(zhǎng)為,長(zhǎng)為,所以 所以為等邊三角形,則,故為二面角的平面角,,,由余弦定理可得,,故二面角的大小為.
(2)設(shè)截面與圓的交點(diǎn)為,截面把圓柱側(cè)面積分成兩部分等價(jià)于劣弧的長(zhǎng)是優(yōu)弧的倍,所以劣弧對(duì)應(yīng)的圓心角為,圓心到弦的距離為,因?yàn)榻孛嫫叫杏?/span>,所以與該截面的距離等價(jià)于圓心到弦的距離,故與該截面的距離為.
(3)根據(jù)題意可知,線段繞著旋轉(zhuǎn)所形成的幾何體為如圖所示的圓錐,其中,所以該幾何體的表面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=asin2x﹣2cos2x+1(a∈R)的圖象經(jīng)過點(diǎn)(﹣,1)
(1)求a;
(2)若在區(qū)間[0,m]上存在唯一實(shí)數(shù)x0,使得f(x0)=2,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{an}的前k項(xiàng)和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,生產(chǎn)每一噸產(chǎn)品所需的勞動(dòng)力和煤、電耗如下表:
產(chǎn)品品種 | 勞動(dòng)力 | 煤噸 | 電千瓦 |
A產(chǎn)品 | 3 | 9 | 4 |
B產(chǎn)品 | 10 | 4 | 5 |
已知生產(chǎn)每噸A產(chǎn)品的利潤(rùn)是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤(rùn)是12萬元,現(xiàn)在條件有限,該企業(yè)僅有勞動(dòng)力300個(gè),煤360噸,并且供電局只能供電200千瓦,試問:該企業(yè)生產(chǎn)A、B兩種產(chǎn)品各多少噸,才能獲得最大利潤(rùn)?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,生產(chǎn)每一噸產(chǎn)品所需的勞動(dòng)力和煤、電耗如下表:
產(chǎn)品品種 | 勞動(dòng)力 | 煤噸 | 電千瓦 |
A產(chǎn)品 | 3 | 9 | 4 |
B產(chǎn)品 | 10 | 4 | 5 |
已知生產(chǎn)每噸A產(chǎn)品的利潤(rùn)是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤(rùn)是12萬元,現(xiàn)在條件有限,該企業(yè)僅有勞動(dòng)力300個(gè),煤360噸,并且供電局只能供電200千瓦,試問:該企業(yè)生產(chǎn)A、B兩種產(chǎn)品各多少噸,才能獲得最大利潤(rùn)?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)存在與直線平行的切線,求實(shí)數(shù)的取值范圍;
(2)設(shè),若有極大值點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在區(qū)間上的最大值和最小值之和為6,求實(shí)數(shù)的值;
(2)設(shè)函數(shù),若函數(shù)在區(qū)間上恒有零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在問題(2)中,令,比較與0的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)綜》中有這樣一個(gè)問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還”其大意為:“有一個(gè)人走378里路,第一天健步走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”,請(qǐng)問此人第5天走的路程為( )
A. 36里 B. 24里 C. 18里 D. 12里
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com