【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還”其大意為:“有一個人走378里路,第一天健步走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,請問此人第5天走的路程為( )
A. 36里 B. 24里 C. 18里 D. 12里
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:關(guān)于直線對稱且過點和,直線過定點.
(1)證明:直線與圓相交;
(2)記直線與圓的兩個交點為,.
①若弦長,求直線方程;
②求面積的最大值及面積的最大時的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為1的正方形(及其內(nèi)部)繞的旋轉(zhuǎn)一周形成圓柱,如圖,長為,長為,其中與在平面的同側(cè).
(1)求二面角的大;(結(jié)果用反三角函數(shù)值表示)
(2)用一平行于的平面去截這個圓柱,若該截面把圓柱側(cè)面積分成兩部分,求與該截面的距離;
(3)求線段,繞著旋轉(zhuǎn)所形成的幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中,為的中點,為外心,點滿足.
(1)證明:;
(2)若,設(shè)與相交于點,關(guān)于點對稱,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為1的正三角形,、分別是邊、上的點,若,,其中,設(shè)的中點為,中點為.
(1)若、、三點共線,求證:;
(2)若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,若,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當時,,求在上的解析式;
(3)對于(2)中的,若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市地鐵建設(shè)的持續(xù)推進,市民的出行也越來越便利,根據(jù)大數(shù)據(jù)統(tǒng)計,某條地鐵線路運行時,發(fā)車時間間隔(單位:分鐘)滿足: ,平均每班地鐵的載客人數(shù) (單位:人)與發(fā)車時間間隔近似地滿足函數(shù)關(guān)系:,
(1)若平均每班地鐵的載客人數(shù)不超過1560人,試求發(fā)車時間間隔的取值范圍;
(2)若平均每班地鐵每分鐘的凈收益為(單位:元),則當發(fā)車時間間隔為多少時,平均每班地鐵每分鐘的凈收益最大?并求出最大凈收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(a,0)、B(0,b)(其中ab≠0)O為坐標原點.
(1)動點P(x,y)滿足,求P點的軌跡方程;
(2)設(shè)是線段AB的n+1(n≥1)等分點,當n=2018時,求的值;
(3)若a=b=1,t∈[0,1],求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com