分析 同角三角函數(shù)的基本關(guān)系,正弦定理可得 c2=$\frac{ab•cosC}{1007}$.再根據(jù) a2+b2=mc2,求得m=$\frac{2014{(a}^{2}{+b}^{2})}{{a}^{2}{+b}^{2}{-c}^{2}}$=$\frac{2014{(a}^{2}{+b}^{2})}{{a}^{2}{+b}^{2}-\frac{{a}^{2}{+b}^{2}}{m}}$,解方程求出m值.
解答 解:△ABC中,∵$\frac{tanAtanB}{tanA+tanB}$=1007tanC,且a2+b2=mc2,則 $\frac{sinAsinB}{sinAcosB+cosAsinB}$=1007$\frac{sinC}{cosC}$,
∴sinAsinBcosC=1007sinCsin(A+B)=1007sin2C.
再利用正弦定理可得ab•cosC=1007c2,∴c2=$\frac{ab•cosC}{1007}$.
又a2+b2=mc2,∴a2+b2 =m•$\frac{ab•cosC}{1007}$=$\frac{mab•\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}}{1007}$=$\frac{m{(a}^{2}{+b}^{2}{-c}^{2})}{2014}$.
∴m=$\frac{2014{(a}^{2}{+b}^{2})}{{a}^{2}{+b}^{2}{-c}^{2}}$=$\frac{2014{(a}^{2}{+b}^{2})}{{a}^{2}{+b}^{2}-\frac{{a}^{2}{+b}^{2}}{m}}$,∴2014(a2+b2)=m(a2+b2)-( a2+b2 ),
∴m=2015,
故答案為:2015.
點評 本題考查同角三角函數(shù)的基本關(guān)系,正弦定理、余弦定理的應(yīng)用,式子變形是解題的關(guān)鍵和難點,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{3}{2}$] | B. | (1,$\frac{3}{2}$] | C. | (1,$\frac{3}{4}$] | D. | (1,$\frac{7}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\root{3}{4V}$ | B. | $\root{3}{6V}$ | C. | $\root{3}{8V}$ | D. | $\sqrt{4V}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com