已知f(x)=-x2,g(x)=2x-m,若對(duì)任意x1∈[-1,3],總存在x2∈[0,2],使f(x1)≥g(x2)成立,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:條件對(duì)任意x1∈[-1,3],總存在x2∈[0,2],使f(x1)≥g(x2)成立等價(jià)為上f(x)min≥g(x)min即可.
解答: 解:∵x1∈[-1,3],∴-9≤f(x1)≤0,
∵x2∈[0,2],∴1-m≤g(x2)≤4-m,
若對(duì)任意x1∈[-1,3],總存在x2∈[0,2],使f(x1)≥g(x2)成立,
則f(x)min≥g(x)min即可,
即-9≥1-m,
解得m≥10,
故答案為:[10,+∞)
點(diǎn)評(píng):本題主要考查函數(shù)值的大小比較以及不等式恒成立問(wèn)題,將條件轉(zhuǎn)化為求函數(shù)最值之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用4種不同的顏色涂入如圖四個(gè)小矩形中,要求相鄰矩形的涂色不得相同,則不同的涂色方法共有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(x)=2f(
1
x
),當(dāng)x∈[1,3]時(shí),f(x)=lnx,若在區(qū)間[
1
3
,3]內(nèi),函數(shù)g(x)=f(x)-ax(a>0)恰有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=3x+5,x∈{3,6}的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x+3x-6的零點(diǎn)所在區(qū)間是( 。
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義x∈[-1,1]在偶函數(shù)f(x)滿足:當(dāng)x∈[0,1]時(shí),f(x)=x+2
2-x
,函數(shù)g(x)=ax+5-2a(a>0),
(1)求函數(shù)f(x)在x∈[-1,1]上的解析式:
(2)若對(duì)于任意x1,x2∈[-1,1],都有g(shù)(x2)>f(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,直線ρsin(θ-
π
4
)=
2
2
與圓ρ=2cosθ的位置關(guān)系是( 。
A、相交B、相離C、內(nèi)切D、外切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2-2(a-1)x+3,求f(x)在[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),函數(shù)的解析式為f(x)=
2
x
-1,求函數(shù)f(x)在R上的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案