20.已知數(shù)列{an}的首項a1=1,前n項和為Sn,且Sn=2Sn-1+1(n≥2且n∈N*),數(shù)列{bn}是等差數(shù)列,且b1=a1,b4=a1+a2+a3,設(shè)cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,數(shù)列{cn}的前n項和為Tn,則T10=$\frac{10}{21}$.

分析 由Sn=2Sn-1+1(n≥2且n∈N*),變形為Sn+1=2(Sn-1+1),利用等比數(shù)列的通項公式可得Sn.再利用等差數(shù)列的通項公式可得bn,利用“裂項求和”可得Tn

解答 解:∵Sn=2Sn-1+1(n≥2且n∈N*),
∴Sn+1=2(Sn-1+1),
∴數(shù)列{Sn+1}是等比數(shù)列,首項為2,公比為2,
∴Sn+1=2n,
∴${S}_{n}={2}^{n}$-1.
設(shè)等差數(shù)列{bn}的公差為d,
∵b1=a1=1,b4=a1+a2+a3=S3-1=7,
∴1+3d=7,解得d=2.
∴bn=1+2(n-1)=2n-1.
設(shè)cn=$\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴數(shù)列{cn}的前n項和為Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.
∴T10=$\frac{10}{21}$.
故答案為:$\frac{10}{21}$.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式、“裂項求和”,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$\frac{sinα}{1+cosα}$=$\frac{1}{3}$,求(sinα-1)(cosα-1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列三角函數(shù)值(可用計算器)
(1)cos1109°;
(2)tan$\frac{19π}{3}$
(3)sin(-1050°)
(4)tan(-$\frac{31π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(5,2),則|$\overrightarrow{a}$+$\overrightarrow$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知{an}中,a1=1,且an+1=$\frac{1}{2}$an+$\frac{1}{{2}^{n}}$,則a3=( 。
A.1B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知方程$\frac{|cos(x-\frac{π}{2})|}{x}$=k在(0,+∞)上有兩個不同的解a,b(a<b),則下面結(jié)論正確的是(  )
A.sina=acosbB.sina=-acosbC.cosa=bsinbD.sinb=-bsina

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{4}{3}$B.$\frac{5}{2}$C.$\frac{7}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xoy中,已知點P為直線l:x=2上一點,過點A(1,0)作OP的垂線與以O(shè)P為直徑的圓K相交于B,C兩點.
(1)若BC=$\sqrt{6}$,求圓K的方程;
(2)求證:點B始終在某定圓上.
(3)是否存在一定點Q(異于點A),使得$\frac{QB}{AB}$為常數(shù)?若存在,求出定點Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.甲、乙兩人下棋,兩人下成和棋的概率是$\frac{1}{2}$,乙獲勝的概率是$\frac{1}{2}$,則乙不輸?shù)母怕适?,甲獲勝的概率是0,甲不輸?shù)母怕适?\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案