【題目】如圖,在平行四邊形中,,,以為折痕將△折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面平面;
(2)為線段上一點(diǎn),為線段上一點(diǎn),且,求三棱錐的體積.
【答案】(1)見解析.
(2)1.
【解析】分析:(1)首先根據(jù)題的條件,可以得到=90,即,再結(jié)合已知條件BA⊥AD,利用線面垂直的判定定理證得AB⊥平面ACD,又因?yàn)?/span>AB平面ABC,根據(jù)面面垂直的判定定理,證得平面ACD⊥平面ABC;
(2)根據(jù)已知條件,求得相關(guān)的線段的長度,根據(jù)第一問的相關(guān)垂直的條件,求得三棱錐的高,之后借助于三棱錐的體積公式求得三棱錐的體積.
詳解:(1)由已知可得,=90°,.
又BA⊥AD,且,所以AB⊥平面ACD.
又AB平面ABC,
所以平面ACD⊥平面ABC.
(2)由已知可得,DC=CM=AB=3,DA=.
又,所以.
作QE⊥AC,垂足為E,則 .
由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.
因此,三棱錐的體積為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費(fèi)情況,隨機(jī)抽取了 100名中學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)査的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖.已知三個(gè)金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費(fèi)金額不低于550元的學(xué)生稱為“高消費(fèi)群”.
(1)求的值,并求這100名學(xué)生月消費(fèi)金額的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“高消費(fèi)群”與性別有關(guān)?
附: (其中樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)人射擊,甲射擊一次中靶概率是,乙射擊一次中靶概率是.
(1)兩人各射擊一次,中靶至少一次就算完成目標(biāo),則完成目標(biāo)概率是多少?
(2)兩人各射擊2次,中靶至少3次就算完成目標(biāo),則完成目標(biāo)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),).給你四個(gè)函數(shù):①;②;③;④.
(1)當(dāng)時(shí),求不等式的解集;
(2)求函數(shù)的最小值;
(3)在給你的四個(gè)函數(shù)中,請(qǐng)選擇一個(gè)函數(shù)(不需寫出選擇過程和理由),該函數(shù)記為,滿足條件:存在實(shí)數(shù)a,使得關(guān)于x的不等式的解集為,其中常數(shù)s,,且.對(duì)選擇的和任意,不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)請(qǐng)根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: ,)
參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過市場(chǎng)調(diào)查,得到某種產(chǎn)品的資金投入x(單位:萬元)與獲得的利潤y(單位:萬元)的數(shù)據(jù),如表所示:
資金投入x | 2 | 3 | 4 | 5 | 6 |
利潤y | 2 | 3 | 5 | 6 | 9 |
(1)畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;
(3)現(xiàn)投入資金10萬元,求獲得利潤的估計(jì)值為多少萬元?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活水平的不斷提高,人們對(duì)餐飲服務(wù)行業(yè)的要求也越來越高,由于工作繁忙無法抽出時(shí)間來享受美味,這樣網(wǎng)上外賣訂餐應(yīng)運(yùn)而生.若某商家的一款外賣便當(dāng)每月的銷售量(單位:千盒)與銷售價(jià)格(單位:元/盒)滿足關(guān)系式其中,為常數(shù),已知銷售價(jià)格為14元/盒時(shí),每月可售出21千盒.
(1)求的值;
(2)假設(shè)該款便當(dāng)?shù)氖澄锊牧、員工工資、外賣配送費(fèi)等所有成本折合為每盒12元(只考慮銷售出的便當(dāng)盒數(shù)),試確定銷售價(jià)格的值,使該店每月銷售便當(dāng)所獲得的利潤最大.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次人才招聘會(huì)上,有、兩家公司分別開出了他們的工資標(biāo)準(zhǔn):公司允諾第一個(gè)月工資為8000元,以后每年月工資比上一年月工資增加500元;公司允諾第一年月工資也為8000元,以后每年月工資在上一年的月工資基礎(chǔ)上遞增,設(shè)某人年初被、兩家公司同時(shí)錄取,試問:
(1)若該人分別在公司或公司連續(xù)工作年,則他在第年的月工資分別是多少;
(2)該人打算連續(xù)在一家公司工作10年,僅從工資收入總量較多作為應(yīng)聘的標(biāo)準(zhǔn)(不計(jì)其他因素),該人應(yīng)該選擇哪家公司,為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com