(2013•婺城區(qū)模擬)如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O為AC與BD的交點,E為PB上任意一點.
(I)證明:平面EAC⊥平面PBD;
(II)若PD∥平面EAC,并且二面角B-AE-C的大小為45°,求PD:AD的值.
分析:(I)根據(jù)PD⊥平面ABCD,得到AC⊥PD,結(jié)合菱形ABCD中AC⊥BD,利用線面垂直判定定理,可得AC⊥平面PBD,從而得到
平面EAC⊥平面PBD;
(II)連接OE,由線面平行的性質(zhì)定理得到PD∥OE,從而在△PBD中得到E為PB的中點.由PD⊥面ABCD得到OE⊥面ABCD,可證出平面EAC⊥平面ABCD,進而得到BO⊥平面EAC,所以BO⊥AE.過點O作OF⊥AE于點F,連接OF,證出AE⊥BF,由二面角平面角的定義得∠BFO為二面角B-AE-C的平面角,即∠BFO=45°.分別在Rt△BOF和Rt△AOE中利用等積關(guān)系的三角函數(shù)定義,算出OE=
6
4
AD
,由此即可得到PD:AD的值.
解答:解:(I)∵PD⊥平面ABCD,AC?平面ABCD,∴AC⊥PD
∵菱形ABCD中,AC⊥BD,PD∩BD=D
∴AC⊥平面PBD
又∵AC?平面EAC,平面EAC⊥平面PBD;
(II)連接OE,
∵PD∥平面EAC,平面EAC∩平面PBD=OE,PD?平面PBD
∴PD∥OE,結(jié)合O為BD的中點,可得E為PB的中點
∵PD⊥平面ABCD,∴OE⊥平面ABCD,
又∵OE?平面EAC,∴平面EAC⊥平面ABCD,
∵平面EAC∩平面ABCD=AC,BO?平面ABCD,BO⊥AC
∴BO⊥平面EAC,可得BO⊥AE
過點O作OF⊥AE于點F,連接OF,則
∵AE⊥BO,BO、OF是平面BOF內(nèi)的相交直線,
∴AE⊥平面BOF,可得AE⊥BF
因此,∠BFO為二面角B-AE-C的平面角,即∠BFO=45°
設(shè)AD=BD=a,則OB=
1
2
a,OA=
3
2
a,
在Rt△BOF中,tan∠BFo=
OB
OF
=
1
2
a
OD
=1
,可得OF=
1
2
a

Rt△AOE中利用等積關(guān)系,可得OA•OE=OF•AE
3
2
a•OE=
1
2
a•
3
4
a2+OE2
,解之得OE=
6
4
a

∴PD=2OE=
6
2
a
,可得PD:AD=
6
:2
即PD:AD的值為
6
2
點評:題給出一個特殊四棱錐,要我們證明面面垂直,并在已知二面角大小的情況下求線段的比值,著重考查了空間垂直位置關(guān)系的判斷與證明和二面角平面角的求法等知識,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•婺城區(qū)模擬)設(shè)m,n是不同的直線,α,β是不同的平面,下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•婺城區(qū)模擬)在△ABC中,已知
AB
AC
=9,sinB=cosA•sinC,S△ABC=6,P為線段AB上的點,且
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
,則xy的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•婺城區(qū)模擬)已知點P是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
左支上一點,F(xiàn)1,F(xiàn)2是雙曲線的左、右兩個焦點,且PF1⊥PF2,PF2與兩條漸近線相交于M,N兩點(如圖),點N恰好平分線段PF2,則雙曲線的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•婺城區(qū)模擬)若
1-i1+i
=a+bi(a,b∈R),則a-b的值是
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•婺城區(qū)模擬)已知數(shù)列{an}是公差為1的等差數(shù)列,Sn是其前n項和,若S8是數(shù)列{Sn}中的唯一最小項,則{an}數(shù)列的首項a1的取值范圍是
(-8,-7)
(-8,-7)

查看答案和解析>>

同步練習冊答案