設(shè)函數(shù)(其中),,已知它們?cè)?img src="http://thumb.zyjl.cn/pic5/tikupic/25/f/vgfbo.png" style="vertical-align:middle;" />處有相同的切線.
(1)求函數(shù),的解析式;
(2)求函數(shù)在上的最小值;
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
(1) .
(2) ;
(3)滿足題意的的取值范圍為.
解析試題分析:(1) 應(yīng)用導(dǎo)數(shù)的幾何意義,確定切點(diǎn)處的導(dǎo)函數(shù)值,得切線斜率,建立的方程組.
(2) 應(yīng)用導(dǎo)數(shù)研究函數(shù)的最值,基本步驟明確,本題中由于中的不確定性,應(yīng)該對(duì)其取值的不同情況加以討論.
當(dāng)時(shí),在單調(diào)遞減,單調(diào)遞增,
得到.
當(dāng)時(shí),在單調(diào)遞增,得到;
即 .
(3)構(gòu)造函數(shù),
問(wèn)題轉(zhuǎn)化成.
應(yīng)用導(dǎo)數(shù)研究函數(shù)的最值,即得所求.
試題解析:(1) , 1分
由題意,兩函數(shù)在處有相同的切線.
,
. 3分
(2) ,由得,由得,
在單調(diào)遞增,在單調(diào)遞減. 4分
當(dāng)時(shí),在單調(diào)遞減,單調(diào)遞增,
∴. 5分
當(dāng)時(shí),在單調(diào)遞增,
;
6分
(3)令,
由題意當(dāng) 7分
∵恒成立, 8分
, 9分
,由得;由得
∴在單調(diào)遞減,在單調(diào)遞增 10分
①當(dāng),即時(shí),在單調(diào)遞增,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖像上,且過(guò)點(diǎn)的切線的斜率為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),等差數(shù)列的任一項(xiàng),其中是中所有元素的最小數(shù),,求的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知.
(1)當(dāng)時(shí),求的最大值;
(2)求證:恒成立;
(3)求證:.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),。
(1)求函數(shù)的解析式;
(2)若對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),,且,求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),函數(shù)是函數(shù)的導(dǎo)函數(shù).
(1)若,求的單調(diào)減區(qū)間;
(2)若對(duì)任意,且,都有,求實(shí)數(shù)的取值范圍;
(3)在第(2)問(wèn)求出的實(shí)數(shù)的范圍內(nèi),若存在一個(gè)與有關(guān)的負(fù)數(shù),使得對(duì)任意時(shí)恒成立,求的最小值及相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值;
(3)數(shù)列滿足,,求的整數(shù)部分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x3-ax-1.
(1)若a=3時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)在實(shí)數(shù)集R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使f(x)在(-1,1)上單調(diào)遞減?若存在,求出a的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函數(shù)f(x)的極大值;
(2)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn).
①試用a表示b;
②設(shè)a>0,函數(shù)g(x)=(a2+14)ex+4.若?ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為x+2y-3=0.求a,b.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com