下列命題中,正確命題的個(gè)數(shù)為( 。
①“若xy=0,則x=0或y=0”的逆否命題為“若x≠0且y≠0,則xy≠0;
②函數(shù)f(x)=ex+x-2的零點(diǎn)所在區(qū)間是(1,2);
③x2-5x+6=0是x=2的必要不充分條件.
A、0B、1C、2D、3
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:①寫出“若xy=0,則x=0或y=0”的逆否命題,判斷真假即可;
②利用零點(diǎn)存在定理判斷函數(shù)f(x)=ex+x-2的零點(diǎn)是否在區(qū)間是(1,2),即可得到結(jié)論;
③利用充要條件判斷x2-5x+6=0是x=2的必要不充分條件,得到結(jié)果即可.
解答: 解:①一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p或¬q分別表示p和q的否定,則逆否命題為:若¬q則¬p.
由“若xy=0,則x=0或y=0”則逆否命題為:“若x≠0且y≠0,則xy≠0;故本命題正確,
②∵函數(shù)f(x)=ex+x-2,∴f(0)=1+0-2=-1<0,f(1)=e+1-2=e-1>0,故有f(0)×f(1)<0,
根據(jù)函數(shù)零點(diǎn)的判定定理可得函數(shù)f(x)=ex+x-2的零點(diǎn)所在區(qū)間是(0,1),故本命題不正確.
③x2-5x+6=0成立,則有x=2,或者x=3;故③為假命題.
故選:B.
點(diǎn)評:本題主要考察命題的真假判斷與應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1的一條準(zhǔn)線與兩條漸近線交于A、B兩點(diǎn),相應(yīng)的焦點(diǎn)為F,若以AB為直徑的圓恰好過F點(diǎn),則離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角三角形的周長為定值2l,則它的面積的最大值為( 。
A、2
2
l2
B、3
2
l2
C、(3+2
2
)l2
D、(3-2
2
)l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場對A品牌的商品進(jìn)行了市場調(diào)查,預(yù)計(jì)2012年從1月起前x個(gè)月顧客對A品牌的商品的需求總量P(x)件與月份x的近似關(guān)系是:P(x)=
1
2
x(x+1)(41-2x)(x≤12且x∈N*
(1)寫出第x月的需求量f(x)的表達(dá)式;
(2)若第x月的銷售量g(x)=
f(x)-21x,1≤x<7且x∈N*
x2
ex
(
1
3
x
2
-10x+96),7≤x≤12且x∈N*
(單位:件),每件利潤q(x)元與月份x的近似關(guān)系為:q(x)=
10ex
x
,問:該商場銷售A品牌商品,預(yù)計(jì)第幾月的月利潤達(dá)到最大值?月利潤最大值是多少?(e6≈403)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若(
CA
+
CB
 )•(
CA
-
CB
)=0,則△ABC為( 。
A、正三角形B、直角三角形
C、等腰三角形D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足下列三個(gè)條件:
①對于任意的x∈R,都有f(x+4)=f(x);
②對于任意的0≤x1≤x2≤2,都有f(x1)<f(x2);
③函數(shù)y=f(x+2)是偶函數(shù);
則下列結(jié)論中正確的是(  )
A、f(6.5)<f(5)<f(15.5)
B、f(5)<f(6.5)<f(15.5)
C、f(5)<f(15.5)<f(6.5)
D、f(15.5)<f(5)<f(6.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,邊AD所在直線方程為2x-y-2=0,頂點(diǎn)C(2,0).
(Ⅰ)求邊BC所在直線的方程;
(Ⅱ)求AD邊上的高CE所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若?a∈(0,+∞),?θ∈R使asinθ≥a成立,則cos(θ-
π
6
)的值為( 。
A、
3
2
B、
1
2
C、±
1
2
D、±
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對有n(n≥4)個(gè)元素的總體{1,2,3,…,n}進(jìn)行抽樣,先將總體分成兩個(gè)子總體{1,2,3,…,m}和{m+1,m+2,…,n}(m是給定的正整數(shù),且2≤m≤n-2),再從每個(gè)子總體中各隨機(jī)抽取2個(gè)元素組成樣本.用Pij表示元素i和j同時(shí)出現(xiàn)在樣本中的概率.
(1)求P1n的表達(dá)式(用m,n表示);
(2)求所有Pij(1≤i<j≤n)的和.

查看答案和解析>>

同步練習(xí)冊答案