已知拋物線,焦點為,其準線與軸交于點;橢圓:分別以為左、右焦點,其離心率;且拋物線和橢圓的一個交點記為
(1)當時,求橢圓的標準方程;
(2)在(1)的條件下,若直線經(jīng)過橢圓的右焦點,且與拋物線相交于兩點,若弦長等于的周長,求直線的方程
(1)當時,F(1,0),F(-1,0) 設(shè)橢圓的標準方程為(>0),
=1,=  ∵,∴=2,= 
故橢圓的標準方程為="1.------" ---4分
(2) (ⅰ)若直線的斜率不存在,則=1,且A(1,2),B(1,-2),∴=4
又∵的周長等于=2+2=6
∴直線的斜率必存在.-----6分
ⅱ)設(shè)直線的斜率為,則,得
∵直線與拋物線有兩個交點A,B
,且
設(shè)
則可得,                 …………………8分
于是==
=
= 
=                                      …………10分
的周長等于=2+2=6
∴由=6,解得=
故所求直線的方程為.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

給出下列3個命題:①在平面內(nèi),若動點M、兩點的距離之和等于2,則動點M的軌跡是橢圓;②在平面內(nèi),給出點,若動點P滿足,則動點P的軌跡是雙曲線;③在平面內(nèi),若動點Q到點和到直線的距離相等,則動點Q的軌跡是拋物線。其中正確的命題有(        )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知動點P在曲線上移動,則點A(0,– 1)與點P連線中點的軌跡方程是_____________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,點到點,的距離之和是,點的軌跡軸的負半軸交于點,不過點的直線與軌跡交于不同的兩點
⑴求軌跡的方程;
⑵當時,證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓:,過坐標原點O作兩條互相垂直的射線,與橢圓分別交于A,B兩點.
(I)求證O到直線AB的距離為定值.
(Ⅱ)求△0AB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將曲線上各點的縱坐標縮短到原來的(橫坐標不變),所得曲線的方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分) 已知拋物線C的頂點在原點, 焦點為F(0,1).
(1) 求拋物線C的方程;
(2)在拋物線C上是否存在點P, 使得過點P
的直線交C于另一點Q,滿足PFQF, 且
PQ與C在點P處的切線垂直.若存在,求出
P的坐標; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線,過能否作一條直線,與雙曲線交于兩點,且點是線段中點?若能,求出的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)
在△ABC中,頂點A(-1,0),B(1,0),動點D,E滿足:
;②||=|=|③共線.
(Ⅰ)求△ABC頂點C的軌跡方程;
(Ⅱ) 若斜率為1直線l與動點C的軌跡交于M,N兩點,且·=0,求直線l的方程.

查看答案和解析>>

同步練習冊答案