已知圓M定點,點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足

(Ⅰ)求點G的軌跡C的方程;

(Ⅱ)過點(2,0)作直線l,與曲線C交于A,B兩點,O是坐標(biāo)原點,設(shè),是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點F(0,1),直線l:y=-1,P為平面上的動點,點P到點F的距離等于點P到直線l的距離.
(1)求動點P的軌跡C的方程;
(2)已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F(0,1),直線l:y=-1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且
QP
QF
=
FP
FQ

(1)求動點P的軌跡C的方程;
(2)已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,設(shè)|DA|=l1,|DB|=l2,求
l1
l2
+
l2
l1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F(0,1),直線l:y=-1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且
QP
QF
=
FP
FQ
,動點P的軌跡為C,已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,設(shè)|DA|=l1,|DB|=l2,則
l1
l2
+
l2
l1
的最大值為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年山東省高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

已知點F(0,1),直線l:y=-1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且
(1)求動點P的軌跡C的方程;
(2)已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,設(shè)|DA|=l1,|DB|=l2,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案