已知a=
3π
,b=logπ3,c=ln(
3
-1)
,則a,b,c的大小關(guān)系是( 。
分析:利用冪函數(shù)、對數(shù)函數(shù)的單調(diào)性即可得出.
解答:解:∵a=
3π
31
=1
,0<b=logπ3<logππ=1,c=ln(
3
-1)<ln1=0
,
∴c<b<a,
故選C.
點(diǎn)評:本題考查了冪函數(shù)、對數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2(x-a)+bx
(Ⅰ)若a=3,b=l,求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若b=a+
10
3
,函數(shù)f(x)在(1,+∞)上既能取到極大值又能取到極小值,求a的取值范圍;
(Ⅲ)若b=0,不等式
f(x)
x
+
1nx+1≥0對任意的x∈[
1
2
,+∞)
恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2(x-a)+bx
(Ⅰ)若a=3,b=l,求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若b=a+
10
3
,函數(shù)f(x)在(1,+∞)上既能取到極大值又能取到極小值,求a的取值范圍;
(Ⅲ)若b=0,不等式
f(x)
x2
-
1nx+1≥0對任意的x∈[
1
2
,+∞)
恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個(gè)命題:
①方程y=kx+2可表示經(jīng)過點(diǎn)(0,2)的所有直線;
②經(jīng)過點(diǎn)(x0,y0)且與直線l:Ax+By+C=0(A,B≠0)平行的直線方程為:A(x-x0)+B(y-y0)=0;
③在△ABC中,已知a=
3
,A=60°,則
a+b+c
sinA+sinB+sinC
=2;
④函數(shù)f(x)=
x2+2
x2+1
的最小值為2;
⑤lgx+
1
lgx
≥2   
其中真命題是
②③④
②③④
(把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-1,-5),B(3,-2),直線l的傾斜角是直線AB的傾斜角的一半,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省西安市長安區(qū)高三(上)第一次質(zhì)量檢測數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=x2(x-a)+bx
(Ⅰ)若a=3,b=l,求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若b=a+,函數(shù)f(x)在(1,+∞)上既能取到極大值又能取到極小值,求a的取值范圍;
(Ⅲ)若b=0,不等式1nx+1≥0對任意的恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案