【題目】已知點(diǎn)F2 , P分別為雙曲線 ﹣ =1(a>0,b>0)的右焦點(diǎn)與右支上的一點(diǎn),O為坐標(biāo)原點(diǎn),若 = ( + ), = 且2 =a2+b2 , 則該雙曲線的離心率為( )
A.
B.
C.
D.2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=x3﹣ax2+1在(1,3)內(nèi)單調(diào)遞減,則實(shí)數(shù)a的范圍是( )
A.[ ,+∞)
B.(﹣∞,3]
C.(3, )
D.(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足 .
(Ⅰ)求∠C的大小;
(Ⅱ)求sin2A+sin2B的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x| <2x≤2},B={x|ln(x﹣ )≤0},則A∩(RB)=( )
A.
B.(﹣1, ]
C.[ ,1)
D.(﹣1,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中畢業(yè)學(xué)年,在高校自主招生期間,把學(xué)生的平時(shí)成績按“百分制”折算,排出前n名學(xué)生,并對這n名學(xué)生按成績分組,第一組[75,80),第二組[80,85),第三組[85,90),第四組[90,95),第五組[95,100],如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列,且第四組的人數(shù)為60.
(Ⅰ)請?jiān)趫D中補(bǔ)全頻率分布直方圖;
(Ⅱ)若Q大學(xué)決定在成績高的第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)行面試.
①若Q大學(xué)本次面試中有B、C、D三位考官,規(guī)定獲得兩位考官的認(rèn)可即面試成功,且面試結(jié)果相互獨(dú)立,已知甲同學(xué)已經(jīng)被抽中,并且通過這三位考官面試的概率依次為 、 , ,求甲同學(xué)面試成功的概率;
②若Q大學(xué)決定在這6名學(xué)生中隨機(jī)抽取3名學(xué)生接受考官B的面試,第3組中有ξ名學(xué)生被考官B面試,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axlnx+bx(a≠0)在(1,f(1))處的切線與x軸平行,(e=2.71828)
(1)試討論f(x)在(0,+∞)上的單調(diào)性;
(2)①設(shè)g(x)=x+ ,x∈(0,+∞),求g(x)的最小值; ②證明: ≥1﹣x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x+ |(a>0)
(1)當(dāng)a=2時(shí),求不等式f(x)>3的解集;
(2)證明:f(m)+f(﹣ )≥4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com