已知函數(shù)f(x)=m(x+
1
x
)的圖象與函數(shù)h(x)=
1
4
(x+
1
x
)+2的圖象關于點A(0,1)對稱.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.
考點:函數(shù)的圖象與圖象變化,函數(shù)單調(diào)性的判斷與證明
專題:計算題,函數(shù)的性質(zhì)及應用
分析:(1)由題意,h(1)=
5
2
,從而可得(1,
5
2
)關于(0,1)的對稱點(-1,-
1
2
)在函數(shù)f(x)=m(x+
1
x
)的圖象上,從而求m;
(2)由對勾函數(shù)的單調(diào)性求實數(shù)a的取值范圍.
解答: 解:(1)由h(1)=
5
2
得,(1,
5
2
)關于(0,1)的對稱點(-1,-
1
2
)在函數(shù)f(x)=m(x+
1
x
)的圖象上,
故-
1
2
=-2m,
解得,m=
1
4
;
(2)g(x)=
1
4
(x+
1
x
)+
a
4x
=
x2+1+a
4x
=
x
4
+
1+a
4x
,
故1+a>0,
1+a
≥2,
解得a≥3.
點評:本題考查了函數(shù)的性質(zhì)的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1+x)十(1+x)2+…+(1+x)n=a0+a1x+a2x2+…+anxn,若a1+a2+a3+…+an-1=509-n,求自然數(shù)n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3cos(x+
π
6
)

(1)寫出函數(shù)f(x)的周期;
(2)將函數(shù)f(x)圖象上所有的點向右平移
π
6
個單位,得到函數(shù)g(x)的圖象,寫出函數(shù)g(x)的表達式,并判斷函數(shù)g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
ax
x2+b
在x=-1處取得極值-2.
(1)求f(x)的解析式;
(2)m為何值時,函數(shù)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增?
(3)若直線l與f(x)的圖象相切于P(x0,y0),求l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我市某旅行社擬組團參加衡山文化一日游,預測每天游客人數(shù)在50至130 人之間,游客人數(shù)x(人)與游客的消費總額y(元)之間近似地滿足關系:y=-x2+240x-10000.那么游客的人均消費額最高為
 
元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|2x-1|+2,g(x)=-|x+2|+3.,當x∈R時,f(x)-g(x)≥m+2恒成立,實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過點M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長為4
5
,則直線l的方程為( 。
A、2x-y+3=0
B、x+2y+9=0
C、x-2y-9=0
D、2x-y+3=0或x+2y+9=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(sinx,cosx)
,設函數(shù)f(x)=
a
b

(1)若f(x)=0且x∈(0,π)求x的值;
(2)求函數(shù)f(x)取得最大值時,平面向量
a
b
的夾角大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z為虛數(shù),條件甲:z+
1
z
是實數(shù),條件乙:|z|=1,則(  )
A、甲是乙的必要非充分條件
B、甲是乙的充分非必要條件
C、甲是乙的充要條件
D、甲既不是乙的必要條件,也不是乙的充分條件

查看答案和解析>>

同步練習冊答案