19.集合A={-1,1},則集合A的子集共有(  )
A.2個B.4個C.6個D.8個

分析 解法1:根據(jù)集合和子集的定義把集合的子集列舉出來,即可得到個數(shù);
解法2:根據(jù)集合子集的公式2n(其中n為集合的元素),求出集合的子集個數(shù).

解答 解:解法1:∵集合A={-1,1},
∴集合的子集有:∅,{-1},{1},{-1,1},
∴集合A的子集共有4個;
解法2:∵集合A={-1,1},
∴集合中有2個元素,
∴集合A的子集共有22=4個.
故選:B.

點評 本題考查的知識點是計算集合子集的個數(shù),n元集合有2n個子集,有2n-1個非空子集,有2n-1個真子集.有2n個非空真子集是解答本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合$A=\{x∈R|y=\frac{1}{{\sqrt{x-1}}}\},B=\{y|y=x+\frac{1}{x},x∈R且x≠0\}$,則(CRB)∩A=( 。
A.(1,+∞)B.[-2,2)C.(-2,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線l過不同的兩點A(5,-3),B(5,y),則l的斜率為(  )
A.0B.5C.不存在D.與y的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)偶函數(shù)f(x)=a|x+b|在(0,+∞)上單調(diào)遞增,則f(b-2)與f(a+1)的大小關(guān)系為f(a+1)>f(b-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若a=log32,b=log23,$c={log_4}\frac{1}{3}$,則下列結(jié)論正確的是( 。
A.a<c<bB.c<b<aC.${10^a}<{({\frac{1}{3}})^b}$D.$lga<{({\frac{1}{2}})^b}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)計算:${(2\frac{1}{4})^{\frac{1}{2}}}+(lg7{)^0}+{(\frac{8}{125})^{-\frac{1}{3}}}$;
(2)解方程:${log_2}({3^x}-49)=5$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)α、β都是銳角,且cosα=$\frac{1}{3}$,sin(α+β)=$\frac{4}{5}$,則cosβ等于( 。
A.$\frac{8\sqrt{2}-3}{15}$B.$\frac{8\sqrt{2}+3}{15}$C.$\frac{8\sqrt{2}-3}{15}$或$\frac{8\sqrt{2}+3}{15}$D..以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.圓臺的上下底面半徑和高的比為1:4:4,母線長為10,則其表面積為168π.
(參考公式:圓臺表面積S=π(r′2+r2+r′l+rl),其中r′,r分別為圓臺的上、下底面半徑,l為母線長.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知四邊形ABCD是菱形,點P在對角線AC上(不包括端點A、C),則$\overrightarrow{AP}$=( 。
A.λ($\overrightarrow{AB}$+$\overrightarrow{BC}$) λ∈(0,1)B.λ($\overrightarrow{AB}$+$\overrightarrow{BC}$) λ∈(0,$\frac{\sqrt{2}}{2}$)C.λ($\overrightarrow{AB}$-$\overrightarrow{BC}$) λ∈(0,1)D.λ($\overrightarrow{AB}$-$\overrightarrow{BC}$) λ∈(0,$\frac{\sqrt{2}}{2}$)

查看答案和解析>>

同步練習(xí)冊答案