已知定義域?yàn)镽的函數(shù)y=f(x)滿足f(x+1)f(x-1)=1,且f(3)=3,則f(2009)=( 。
A、3
B、
1
3
C、2009
D、
1
2009
分析:由題意和f(3)=3,需要令x=2代入關(guān)系式可求出f(1),再令x=x+1和x=x+2求出函數(shù)的周期,利用周期性求出f(2009)的值.
解答:解:由題意知,對(duì)于任意的實(shí)數(shù)都有f(x+1)f(x-1)=1,
令x=2代入上式得,f(3)f(1)=1,
∵f(3)=3,∴f(1)=
1
3
,
令x=x+1代入得,f(x+2)f(x)=1,則f(x+2)=
1
f(x)

f(x+4)=
1
f(x+2)
=f(x),∴f(x)是周期函數(shù)且周期是4,
∴f(2009)=f(4×502+1)=f(1)=
1
3

故選B.
點(diǎn)評(píng):本題是一道抽象函數(shù)問(wèn)題,解題的關(guān)鍵是巧妙的賦值,求出函數(shù)值和函數(shù)的周期性,再利用周期性求函數(shù)值,即靈活的“賦值法”是解決抽象函數(shù)問(wèn)題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•石家莊二模)已知定義域?yàn)镽的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對(duì)稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(4-x)=-f(x),當(dāng)x<2時(shí),f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案