13.${(\frac{1-i}{1+i})^4}$=( 。
A.-1B.1C.4D.-4

分析 $\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}$=-i,即可得出.

解答 解:∵$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}$=$\frac{-2i}{2}$=-i,
∴原式=(-i)4=1.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$|\begin{array}{l}{x}\end{array}|,x∈[a,b]$值域是[0,1],那么點(diǎn)p(a,b) 在平面角坐標(biāo)系中的位置位于圖中的( 。
A.線段OB和ODB.線段BC和CDC.線段BC和BOD.線段OB和CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.二次函數(shù)f(x)=-x2+2x+1在閉區(qū)間[-1,0]上(  )
A.有最大值和最小值B.有最大值無(wú)最小值
C.有最小值無(wú)最大值D.無(wú)最大值無(wú)最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.直線x-y-1=0的斜率是1;傾斜角為45°; 在y軸上的截距是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.橢圓焦距為8,離心率e=0.8,求該橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知復(fù)數(shù)z=-$\sqrt{3}$+3i,則z在復(fù)平面所對(duì)應(yīng)的坐標(biāo)是(  )
A.(3,$\sqrt{3}$)B.($\sqrt{3}$,3)C.(3,-$\sqrt{3}$)D.(-$\sqrt{3}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.下列命題中,正確的命題個(gè)數(shù)是6.
①ac2>bc2⇒a>b
②a≥b⇒ac2≥bc2
③$\frac{a}{c}$>$\frac{c}$⇒ac>bc
④若a<b<0,則a2>ab>b2
⑤$\left\{\begin{array}{l}{a>b}\\{ac>bc}\end{array}\right.$⇒c>0;
⑥$\left\{\begin{array}{l}{a>b}\\{\frac{1}{a}>\frac{1}}\end{array}\right.$⇒a>0,b<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)在(0,+∞)上是增函數(shù)的是( 。
A.$y={({\frac{1}{3}})^x}$B.y=-2x+5C.y=lnxD.y=$\frac{3}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列判斷正確的是( 。
A.若p是真命題,則:“p且q”一定為真
B.若“p且q”是假命題,則:p一定為假
C.若“p且q”是真命題,則:p一定為真
D.若p是假命題,則:“p且q”不一定為假

查看答案和解析>>

同步練習(xí)冊(cè)答案