給出方程
x2
a2
-
y2
b2
=c
(a,b,c∈R)和三個結論:①方程的曲線是雙曲線;②方程的曲線是橢圓或圓;③方程無軌跡.下面的說法一定正確的是( 。
分析:通過舉反列可得①②不正確,由于對于任意的c∈R,方程可以表示兩條相交直線、可以表示橢圓、雙曲線,故③不正確,從而得到結論.
解答:解:當c=0時,方程
x2
a2
-
y2
b2
=c
(a,b,c∈R)即
x2
a2
-
y2
b2
= 0
,即y=±
b
a
x
,表示兩條相交直線.
故①②不正確.
方程
x2
a2
-
y2
b2
=c
(a,b,c∈R),對于任意的c∈R,方程可以表示兩條相交直線、可以表示橢圓、雙曲線,
故③不正確.
故選C.
點評:本題主要考查方程表示的曲線,通過給變量取特殊值,舉反例來說明某個命題不正確,是一種簡單有效的方法,
屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•涼山州二模)在直角坐標平面內,點A(x,y)實施變換f后,對應點為A'(y,x),給出以下命題:
①圓x2+y2=r2(r≠0)上任意一點實施變換f后,對應點的軌跡仍是圓x2+y2=r2
②若直線y=kx+b上海一點實施變換f后,對應點的軌跡方程仍是y=kx+b,則k=-1;
③橢圓
x2
a2
+
y2
b2
=1(a>b>0)
每一點,實施變換f后,對應點的軌跡仍是離心率不變的橢圓;
④曲線C;y=1nx-x(x>0)上每一點實施變換f后,對應點軌跡足曲線C',M是曲線C上任意一點,N是曲線C'上任意一點,則|MN|的最小值為
2
(1+ln2)

以上正確命題的序號是
①③④
①③④
 (寫出全部正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•日照一模)給出下列四個命題:
①若x>0,且x≠1則lgx+
1
lgx
≥2
;
②設x,y∈R,命題“若xy=0,則x2+y2=0”的否命題是真命題;
③若函數(shù)y=f(x)的圖象在點M(1,f(1))處的切線方程是y=
1
2
x+2
,則f(1)+f'(1)=3;
④已知拋物線y2=4px(p>0)的焦點F與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點重合,點A是兩曲線的交點,AF⊥x軸,則雙曲線的離心率為
2
+1

其中所有真命題的序號是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濰坊一模)如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N(點M必在點N的右側),且|MN|=3橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距等于2|ON|,且過點(
2
6
2
)

(I) 求圓C和橢圓D的方程;
(Ⅱ) 設橢圓D與x軸負半軸的交點為P,若過點M的動直線l與橢圓D交于A、B兩點,∠ANM=∠BNP是否恒成立?給出你的判斷并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列結論,其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網給出以下判斷:
(1)b=0是函數(shù)f(x)=ax2+bx+c為偶函數(shù)的充要條件;
(2)橢圓
x2
4
+
y2
3
=1
中,以點(1,1)為中點的弦所在直線方程為x+2y-3=0;
(3)回歸直線
y
=
b
x+
a
必過點(
.
x
,
.
y
)

(4)如圖,在四面體ABCD中,設E為△BCD的重心,則
AE
=
AB
+
1
2
AC
+
2
3
AD

(5)雙曲線
x2
a2
-
y2
b2
=1( a>0 , b>0 )
的兩焦點為F1,F(xiàn)2,P為右支是異于右頂點的任一點,△PF1F2的內切圓圓心為T,則點T的橫坐標為a.其中正確命題的序號是
 

查看答案和解析>>

同步練習冊答案