7.某幾何體的三視圖如圖所示,則這個(gè)幾何體外接球的表面積為( 。
A.20πB.40πC.50πD.60π

分析 由三視圖由三視圖得該幾何體是一個(gè)直三棱柱ABC-A1B1C1,從而得到這個(gè)幾何體外接球是棱長(zhǎng)為3,4,5的長(zhǎng)方體的外接球,由此能求出這個(gè)幾何體外接球的表面積.故選:C.

解答 解:由三視圖得該幾何體是一個(gè)直三棱柱ABC-A1B1C1
其中AB=3,AC=4,AA1=5,
∴這個(gè)幾何體外接球是棱長(zhǎng)為3,4,5的長(zhǎng)方體的外接球,
∴這個(gè)幾何體外接球的半徑R=$\frac{1}{2}\sqrt{9+16+25}$=$\frac{5\sqrt{2}}{2}$,
∴這個(gè)幾何體外接球的表面積S=4πR2=$4π×(\frac{5\sqrt{2}}{2})^{2}$=50π.
故選:C.

點(diǎn)評(píng) 本題考查幾何體的外接球的表面積的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意,幾何體的三視圖的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知ABCD-A1B1C1D1是底面為正方形的長(zhǎng)方體,∠AD1A1=60°,AD1=4,點(diǎn)P是AD1上的動(dòng)點(diǎn).
(Ⅰ)試判斷不論點(diǎn)P在AD1上的任何位置,是否都有平面B1PA1垂直于平面AA1D1?并證明你的結(jié)論;
(Ⅱ)當(dāng)P為AD1的中點(diǎn)時(shí),求異面直線AA1與B1P所稱角的余弦值;
(Ⅲ)求直線PB1與平面AA1D1所成角的正切值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知點(diǎn)G是圓F:(x+2)2+y2=4上任意一點(diǎn),R(2,0),線段GR的垂直平分線交直線GF于H.
(1)求點(diǎn)H的軌跡C的方程;
(2)點(diǎn)M(1,0),P、Q是軌跡C上的兩點(diǎn),直線PQ過圓心F(-2,0),且F在線段PQ之間,求△PQM面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=x5+x3+x的圖象( 。
A.關(guān)于y軸對(duì)稱B.關(guān)于直線y=x對(duì)稱
C.關(guān)于坐標(biāo)原點(diǎn)對(duì)稱D.關(guān)于直線y=-x對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知拋物線x2=3y上兩點(diǎn)A,B的橫坐標(biāo)恰是方程x2+5x+1=0的兩個(gè)實(shí)根,則直線AB的斜率=$-\frac{5}{3}$;直線AB的方程為5x+3y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在正四棱柱ABCD-A1B1C1D1中,∠B1AB=60°
(1)求A1C與平面ABCD所成的角的大;
(2)求異面直線B1C與A1C1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,m),且$\overrightarrow{a}$⊥$\overrightarrow$,則2$\overrightarrow{a}$+3$\overrightarrow$=(-4,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$β∈({\frac{3π}{2},2π})$,滿足tan(α+β)-2tanβ=0,則tanα的最小值是$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|x-2a|+|x-a|,x∈R,a≠0
(1)當(dāng)a=1時(shí),解不等式:f(x)>2
(2)若b∈R,證明:f(b)≥f(a),并求在等號(hào)成立時(shí)$\frac{a}$的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案