10.已知f(x)=log2(x+2),g(x)=log2(4-x).
(1)求函數(shù)f(x)-g(x)的定義域;
(2)求使函數(shù)f(x)-g(x)的值為正數(shù)的x的取值范圍.

分析 (1)根據(jù)對數(shù)函數(shù)的定義,求出f(x)和g(x)的定義域的交集即可,
(2)f(x)-g(x)的值為正數(shù),即log2(x+2)>log2(4-x),根據(jù)對數(shù)函數(shù)的單調(diào)性,得到關(guān)于x的不等式組,解得即可.

解答 解:(1)∵f(x)=log2(x+2),g(x)=log2(4-x).
∴$\left\{\begin{array}{l}{x+2>0}\\{4-x>0}\end{array}\right.$,
解得-2<x<4,
故函數(shù)f(x)-g(x)的定義域為(-2,4);
(2)∵f(x)-g(x)的值為正數(shù),
∴l(xiāng)og2(x+2)>log2(4-x),
∴$\left\{\begin{array}{l}{x+2>4-x}\\{-2<x<4}\end{array}\right.$,
解得1<x<4,
∴函數(shù)f(x)-g(x)的值為正數(shù)的x的取值范圍為(1,4).

點評 本題考查了對數(shù)函數(shù)的定義域和對數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列式子描述正確的有①②③.
①sin1°<cos1<sin1<cos1°;        
②$\overrightarrow{a}$•$\overrightarrow$=0?|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|;
③cos2α=(1+sinα)(1-sinα);      
④($\overrightarrow{a}$•$\overrightarrow$)2=$\overrightarrow{a}$2•$\overrightarrow$2
⑤2sin2x=1+cos2x;            
⑥sin($\frac{π}{6}$-α)≠cos($\frac{π}{3}$+α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx,g(x)=$\frac{1}{3}$ax2-bx,其中a,b∈R.
(1)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求實數(shù)a的取值范圍;
(2)當(dāng)b=-$\frac{2}{3}$a時,若f(x+1)≤$\frac{3}{2}$g(x)對x∈[0,+∞)恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)a為實數(shù),函數(shù)f(x)=2x2+(x-a)|x-a|
(Ⅰ)若a=1,求f(x)單調(diào)遞增區(qū)間;
(Ⅱ)記g(x)=x2-2x-3,若存在x1,x1∈[0,4],使得f(x1)=g(x1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)y=f(x)為偶函數(shù),且當(dāng)x>0時,f(x)=x2-2x+3,則當(dāng)x<0時,f(x)的解析式f(x)=x2+2x+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了了解高一學(xué)生的體能情況,某校隨機抽取部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出了頻率直方圖如圖所示,已知次數(shù)在[100,110)間的頻數(shù)為7,次數(shù)在110以下(不含110)視為不達(dá)標(biāo),次數(shù)在[110,130)視為達(dá)標(biāo),次數(shù)在130以上視為有優(yōu)秀.
(1)求此次抽樣的樣本總數(shù)為多少人?
(2)在樣本中,隨機抽取一人調(diào)查,則抽中不達(dá)標(biāo)學(xué)生、達(dá)標(biāo)學(xué)生、優(yōu)秀學(xué)生的概率分別是多少?
(3)將抽樣的樣本頻率視為總體概率,若優(yōu)秀成績記為15,達(dá)標(biāo)成績記為10分,不達(dá)標(biāo)記為5分,現(xiàn)在從該校高一學(xué)生中隨機抽取2人,他們分值和記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=f(x)的圖象如圖所示,則其導(dǎo)函數(shù)y=f′(x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象與直線y=x無交點,現(xiàn)有下列結(jié)論:
①若a=1,b=2,則c>$\frac{1}{4}$
②若a+b+c=0,則不等式f(x)>x對一切實數(shù)x都成立
③函數(shù)g(x)=ax2-bx+c的圖象與直線y=-x也一定沒有交點
④若a>0,則不等式f[f(x)]>x對一切實數(shù)x都成立
⑤方程f[f(x)]=x一定沒有實數(shù)根
其中正確的結(jié)論是①③④⑤(寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“a>b>0”是“a2>b2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案