如圖,A是△BCD所在平面外一點(diǎn),M、N分別是△ABC和△ACD的重心,已知BD=6.

(1)判斷MN與BD的位置關(guān)系;

(2)求MN的長.

解:(1)如圖,連結(jié)AM、AN分別與BC、CD交于點(diǎn)E、F,

由重心定義知E、F分別為中點(diǎn),連結(jié)EF.

∵E、F分別為BC、CD的中點(diǎn),

∴EF∥BD且EF=BD.

又M為△ABC重心,N為△ACD重心,

∴AM∶ME=AN∶NF=2∶1.

∴MN∥EF且MN=EF.∴MN∥BD(公理4).

(2)MN=EF=BD=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖a,直角梯形ABCD中,∠A=∠B=90°,AB=BC=
12
AD=1,E是底邊AD的中點(diǎn),沿CE將△CDE折起,使A-CE-D是直二面角(如圖b).在圖b中過D作DF⊥平面BCD,EF∥平面BCD.
①求證:DF?平面CDE;
②求點(diǎn)F到平面ACD的距離;
③求面ACE與面ACF所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A是△BCD所在平面外一點(diǎn),AD=BC,E、F分別是AB、CD的中點(diǎn).
(1)若EF=
2
2
AD,求異面直線AD與BC所成的角;
(2)若EF=
3
2
AD,求異面直線AD與BC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A是BCD所在平面外一點(diǎn),AD=BC,E、F分別是AB、CD的中點(diǎn),且EF= AD,求異面直線AD和BC所成的角。(如圖)           

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年蘇教版高中數(shù)學(xué)必修2 1.2點(diǎn)、線、面之間的位置關(guān)系練習(xí)卷(解析版) 題型:填空題

如圖所示,A是△BCD所在平面外一點(diǎn),M、N分別是△ABC和△ACD的重心,若BD=6,則MN=___________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教B版高中數(shù)學(xué)必修2 1.2點(diǎn) 線 面之間的位置關(guān)系練習(xí)卷(解析版) 題型:填空題

如圖所示,A是△BCD所在平面外一點(diǎn),M、N分別是△ABC和△ACD的重心,若BD=6,則MN=___________.

 

查看答案和解析>>

同步練習(xí)冊答案