【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB) (Ⅰ)求角C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.
【答案】解:(Ⅰ)由已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB) 由正弦定理,得a(a﹣b)=(c﹣b)(c+b),(
即a2+b2﹣c2=ab.
所以cosC= = ,
又C∈(0,π),所以C= .
(Ⅱ)由(Ⅰ)知a2+b2﹣c2=ab.所以(a+b)2﹣3ab=c2=7,
又S= sinC= ab= ,
所以ab=6,(9分)
所以(a+b)2=7+3ab=25,即a+b=5.
所以△ABC周長為a+b=c=5+
【解析】(Ⅰ)由已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB)利用正弦定理,得a(a﹣b)=(c﹣b)(c+b),即a2+b2﹣c2=ab.再利用余弦定理即可得出.(Ⅱ)由(Ⅰ)知a2+b2﹣c2=ab.變形為(a+b)2﹣3ab=c2=7,又S= sinC= ab= ,可得ab=6,可得a+b=5.即可得出.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°.點(diǎn)E是棱PC的中點(diǎn),平面ABE與棱PD交于點(diǎn)F. (Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求平面PAF與平面AEF所成的二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=1﹣ ,其中n∈N* .
(Ⅰ)設(shè)bn= ,求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)Cn= ,數(shù)列{CnCn+2}的前n項(xiàng)和為Tn , 是否存在正整數(shù)m,使得Tn< 對于n∈N*恒成立,若存在,求出m的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以雙曲線 (a>0,b>0)上一點(diǎn)M為圓心的圓與x軸恰相切于雙曲線的一個(gè)焦點(diǎn)F,且與y軸交于P、Q兩點(diǎn).若△MPQ為正三角形,則該雙曲線的離心率為( )
A.4
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸為極軸建立極坐標(biāo)系,曲線C1的方程為 (θ為參數(shù)),曲線C2的極坐標(biāo)方程為C2:ρcosθ+ρsinθ=1,若曲線C1與C2相交于A、B兩點(diǎn).
(1)求|AB|的值;
(2)求點(diǎn)M(﹣1,2)到A、B兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρsin(θ+ )=2 (Ⅰ)直接寫出C1的普通方程和極坐標(biāo)方程,直接寫出C2的普通方程;
(Ⅱ)點(diǎn)A在C1上,點(diǎn)B在C2上,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個(gè)銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個(gè)銷售季度的市場需求量,T(單位:萬元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤. (Ⅰ)視x分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求P(x≥120)
(Ⅱ)將T表示為x的函數(shù),求出該函數(shù)表達(dá)式;
(Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點(diǎn)值(組中值)代表該組的各個(gè)值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如x∈[100,110),則取x=105,且x=105的概率等于市場需求量落入100,110)的頻率),求T的分布列及數(shù)學(xué)期望E(T).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線 的一條切線l與y=x,y軸三條直線圍成三角形記為△OAB,則△OAB外接圓面積的最小值為( )
A. ??
B. ??
C. ??
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩陣A的變換下,坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到原來的3倍,縱坐標(biāo)不變.
(1)求矩陣A及A﹣1;
(2)求圓x2+y2=4在矩陣A﹣1的變換下得到的曲線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com