已知向量ab滿足|a|=|b|=1,且|ka+b|=|a-kb|(k>0),令f(k)=a·b。
(1)求f(k)=a·b(用k表示);
(2)當(dāng)k>0時(shí),f(k)≥x2-2tx-對(duì)任意的t∈[-1,1]恒成立,求實(shí)數(shù)x的取值范圍。
解:(1)由題設(shè)得|a|2=|b|2=1,
對(duì)|ka+b|=|a-kb|兩邊平方得k2a2+2ka·b+b2=3(a2-2ka·b+k2b2),
整理易得f(k)=a·b=(k>0)。
(2)當(dāng)且僅當(dāng)k=1時(shí)取等號(hào)
欲使f(k)≥x2-2tx-對(duì)任意的t∈[-1,1]恒成立,等價(jià)于≥x2-2tx-
即g(t)=2xt-x2+1≥0在[-1,1]上恒成立,而g(t)在[-1,1]上為單調(diào)函數(shù)或常函數(shù)
所以
解得
故實(shí)數(shù)x的取值范圍是。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足|
a
+
b
|=
3
|
a
-
b
|
|
a
|=|
b
|=1
,則|
3a
-2
b
|
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
滿足|
a
|=2,|
b
|=1,
a
b
的夾角為60°,則|
a
-2
b
|等于
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
滿足|
a
|=
2
,|
b
|=3,
a
b
的夾角為45°,求|3
a
-
b
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量a,b滿足|a|=2,|b|=3,|2a+b|=
37
,則a與b
的夾角為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浙江模擬)已知向量
a
,
b
滿足|
a
|=2|
b
|≠0,且關(guān)于x的函數(shù)f(x)=2x3+3|
a
|x2+6
a
b
x+5 在實(shí)數(shù)集R上單調(diào)遞增,則向量
a
,
b
的夾角的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案