若拋物線y2=4x的焦點(diǎn)是F,準(zhǔn)線是l,則經(jīng)過(guò)點(diǎn)F、M(4,4)且與l相切的圓共有______個(gè).
拋物線y2=4x的參數(shù)p=2,所以F(1,0),準(zhǔn)線l:x=-1,即x+1=0,
設(shè)經(jīng)過(guò)點(diǎn)M(4,4)、F(1,0),且與直線l相切的圓的圓心為Q(a,b),
則半徑為Q到l的距離為即1+a,
∴圓的方程為(x-a)2+(y-b)2=(1+a)2;
將M、F的坐標(biāo)代入,(4-a)2+(4-b)2=(1+a)2①,
(1-a)2+b2=(1+a)2②,
由①②得:b2-8b+1=10a,③b2=4a,④
由③④得:3b2+16b-2=0,
解得b1=
70
-8
3
,b2=
70
+8
3

將b1,b2分別代入④得:a1=
67-8
70
18
,a2=
67+8
70
18

故圓的個(gè)數(shù)為2個(gè).
故答案為:2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知以向量
v
=(1,
1
2
)
為方向向量的直線l過(guò)點(diǎn)(0,
5
4
)
,拋物線C:y2=2px(p>0)的頂點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)在該拋物線的準(zhǔn)線上.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)A、B是拋物線C上兩個(gè)動(dòng)點(diǎn),過(guò)A作平行于x軸的直線m,直線OB與直線m交于點(diǎn)N,若
OA
OB
+p2=0
(O為原點(diǎn),A、B異于原點(diǎn)),試求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線C1:x2=2y的焦點(diǎn)為F,以F為圓心的圓C2交C1于A,B,交C1的準(zhǔn)線于C,D,若四邊形ABCD是矩形,則圓C2的方程為( 。
A.x2+(y-
1
2
)2=3
B.x2+(y-
1
2
)2=4
C.x2+(y-1)2=12D.x2+(y-1)2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線C:y2=4x,O為坐標(biāo)原點(diǎn),F(xiàn)為C的焦點(diǎn),P是C上一點(diǎn).若△OPF是等腰三角形,則|PO|=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線x=
1
8
y2
的準(zhǔn)線方程是( 。
A.x=-4B.x=-2C.y=-4D.y=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,經(jīng)過(guò)F且斜率為
3
的直線與拋物線在x軸上方的部分相交于點(diǎn)A,AK⊥l,垂足為K,則△AKF的面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)P是拋物線y2=4x上一動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,1)的距離與到拋物線準(zhǔn)線的距離之和的最小值是( 。
A.0B.
2
2
C.1D.
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線x2=8y的焦點(diǎn)坐標(biāo)是( 。
A.(0,2)B.(0,-2)C.(4,0)D.(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,己知矩形ABCD的兩個(gè)頂點(diǎn)A、D位于x軸上,另兩個(gè)頂點(diǎn)B、C位于拋物線y=4-x2在x軸上方的曲線上,求這個(gè)矩形ABCD面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案