分析 利用向量垂直的條件,向量的夾角公式,即可得出結(jié)論.
解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,
∴($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=2-$\overrightarrow{a}$•$\overrightarrow$=0,
∴$\overrightarrow{a}$•$\overrightarrow$=2,
∴$\overrightarrow{a}$•$\overrightarrow$=$\sqrt{2}•2•cos$<$\overrightarrow{a}$,$\overrightarrow$>=2
∴<$\overrightarrow{a}$,$\overrightarrow$>=45°.
|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{4{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}}$=$\sqrt{8-8+4}$=2.
故答案為:2,45°,2.
點(diǎn)評(píng) 本題考查向量垂直的條件,向量的夾角公式,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a∥α,b∥β,a∥b | B. | a⊥γ,b⊥γ,a?α,b?β | C. | a⊥α,b⊥β,a∥b | D. | a?α,b?β,a∥α,b∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${∫}_{0}^{1}$exdx<${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx | B. | ${∫}_{0}^{1}$exdx>${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx | ||
C. | (${∫}_{0}^{1}$exdx)2=${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx | D. | $\frac{1}{2}$${∫}_{0}^{1}$exdx=${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{4}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com