【題目】設(shè)a為實數(shù),函數(shù)f(x)=x3﹣x2﹣x+a,若函數(shù)f(x)過點A(1,0),求函數(shù)在區(qū)間[﹣1,3]上的最值.
【答案】解:∵函數(shù)f(x)過點A(1,0),
∴f(1)=1﹣1﹣1+a=0,
∴a=1,
∴f(x)=x3﹣x2﹣x+1,f′(x)=3x2﹣2x﹣1=(3x+1)(x﹣1),
∴f(x)在[﹣1,﹣ ]上是增函數(shù),在[﹣ ,1]上是減函數(shù),
在[1,3]上是增函數(shù);
而f(﹣1)=﹣1﹣1+1+1=0,
f(﹣ )=﹣ ﹣ + +1=1+ = ,
f(1)=0,
f(3)=27﹣9﹣3+1=16,
故函數(shù)f(x)的最大值為16,最小值為0.
【解析】由題意可得f(1)=1﹣1﹣1+a=0,從而化簡f(x)=x3﹣x2﹣x+1,f′(x)=3x2﹣2x﹣1=(3x+1)(x﹣1),從而判斷函數(shù)的單調(diào)性再求最值即可.
【考點精析】本題主要考查了函數(shù)的最值及其幾何意義的相關(guān)知識點,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知四棱錐P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x3+2x2﹣4x+5在[﹣4,1]上的最大值和最小值分別是( )
A.13,
B.4,﹣11
C.13,﹣11
D.13,最小值不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓和直線,直線, 都經(jīng)過圓外定點.
(1)若直線與圓相切,求直線的方程;
(2)若直線與圓相交于兩點,與交于點,且線段的中點為,
求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某海濱城市附近海面有一臺風(fēng),據(jù)監(jiān)測,當(dāng)前臺風(fēng)中心位于城市O(如圖)的東偏南方向的海面P處,且,并以的速度向西偏北方向移動,臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為,并以的速度不斷增大,問幾小時后該城市開始受到臺風(fēng)的侵襲?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共14分)
如圖,在四棱錐中, 平面,底面是菱形, .
(Ⅰ)求證: 平面
(Ⅱ)若求與所成角的余弦值;
(Ⅲ)當(dāng)平面與平面垂直時,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為,其中為參數(shù), ,再以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,其中, ,直線與曲線交于兩點.
(1)求的值;
(2)已知點,且,求直線的普通方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com