在正方體的側(cè)面內(nèi)有一動點到直線與直線的距離相等,則動點 所在的曲線的形狀為…………(     )
B

專題:圖表型.
分析:根據(jù)題意可知P到點B的距離等于到直線A1B1的距離,利用拋物線的定義推斷出P的軌跡是以B為焦點,以A1B1為準(zhǔn)線的過A的拋物線的一部分.看圖象中,A的形狀不符合;B的B點不符合;D的A點符合.從而得出正確選項.
解:依題意可知P到點B的距離等于到直線A1B1的距離,
根據(jù)拋物線的定義可知,動點P的軌跡是以B為焦點,以A1B1為準(zhǔn)線的過A的拋物線的一部分.
A的圖象為直線的圖象,排除A.
C項中B不是拋物線的焦點,排除C.
D項不過A點,D排除.
故選B .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)(注意:在試題卷上作答無效)

在四棱錐中,側(cè)面底面,,底面是直角梯形,,,.
(Ⅰ)求證:平面
(Ⅱ)設(shè)為側(cè)棱上一點,,
試確定的值,使得二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知PA面ABC,ABBC,若PA=AC=2,AB=1
(1)求證:面PAB面PBC; (2)求二面角A-PC-B的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在三棱錐P-ABC內(nèi),已知PA=PC=AC=,AB=BC=1,面PAC⊥面ABC,E是BC的中點.

(1)求直線PE與AC所成角的余弦值;
(2)求直線PB與平面ABC所成的角的正弦值;
(3)求點C到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐PABCD中,PD⊥平面ABCDADCD,DB平分∠ADC,EPC的中點,ADCD=1,DB=2.

(1)證明PA∥平面BDE;
(2)證明AC⊥平面PBD;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平面內(nèi),ABCD的菱形,都是正方形。將兩個正方形分別沿AD,CD折起,使重合于點D1。設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè),設(shè)(圖2)。

(1)設(shè)二面角E – AC – D1的大小為q,若,求的取值范圍;
(2)在線段上是否存在點,使平面平面,若存在,求出所成的比;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

17.(本小題滿分8分)如圖,正方體ABCDA1B1C1D1中,EDD1中點,
(1)求證:BD1∥平面AEC;
(2)求:異面直線BDAD1所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖已知,點P是直角梯形ABCD所在平面外一點,PA⊥平面ABCD,,, 。

(1)求證:;
(2)求直線PB與平面ABE所成的角;
(3)求A點到平面PCD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖4,是半徑為的半圓,為直徑,點的中點,點和點為線段的三等分點,平面外一點滿足平面,=.
 
(1)證明:;
(2)求點到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案