【題目】在平面直角坐標(biāo)系中,直線截以原點為圓心的圓所得的弦長為。
(1)求圓的方程;
(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點,當(dāng)長最小時,求直線的方程;
(3)設(shè)是圓上任意兩點,點關(guān)于軸的對稱點,若直線分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由。
【答案】(1);(2);(3)是,。
【解析】
試題分析:(1)求出點到直線的距離,進而可求圓的半徑,即可得到圓的方程;(2)設(shè)直線的方程,利用直線與圓相切,及基本不等式,可求長最小時,直線的方程;(3)設(shè),則,求出直線,分別與軸交點,進而可求的值。
試題解析:(1)因為點到直線的距離為,所以圓的半徑為,故圓的方程為。
(2)設(shè)直線的方程為,即,由直線與圓相切,得,即,,當(dāng)且僅當(dāng)時取等號,此時直線的方程為,所以當(dāng)長最小進,直線的方程為。
(3)設(shè)點,則,
直線與軸交點為,則,
直線與軸交點為,則,
所以,故為定值2。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一房產(chǎn)商競標(biāo)得一塊扇形地皮,其圓心角,半徑為,房產(chǎn)商欲在此地皮上修建一棟平面圖為矩形的商住樓,為使得地皮的使用率最大,準(zhǔn)備了兩種設(shè)計方案如圖,方案一:矩形的一邊在半徑上,在圓弧上,在半徑;方案二:矩形EFGH的頂點在圓弧上,頂點分別在兩條半徑上。請你通過計算,為房產(chǎn)商提供決策建議。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線與交于、兩點,且OA·OB=2,其中為原點.
(1)求拋物線的方程;
(2)點坐標(biāo)為,記直線、的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù),且.
(1)若,求函數(shù)的表達(dá)式;
(2)在(1)的條件下,設(shè)函數(shù),若在區(qū)間[-2,2]上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)是否存在實數(shù)使得函數(shù)在[-1,4]上的最大值是4?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當(dāng)一次訂購超過100件時,每多訂購1件,訂購的全部服裝的出場單價就降低0.02元,根據(jù)市場調(diào)查,銷售商一次訂購量不會超過600件.
(1)設(shè)銷售一次訂購件,服裝的實際出廠單價為元,寫出函數(shù)的表達(dá)式;
(2)當(dāng)銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(重點班)我們知道對數(shù)函數(shù),對任意,都有成立,若,則當(dāng)時,.參照對數(shù)函數(shù)的性質(zhì),研究下題:定義在上的函數(shù)對任意,都有,并且當(dāng)且僅當(dāng)時,成立.
(1)設(shè),求證:;
(2)設(shè),若,比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)寫出函數(shù)的定義域和值域;
(2)證明函數(shù)在為單調(diào)遞減函數(shù);
(3)試判斷函數(shù)的奇偶性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,求函數(shù)的表達(dá)式;
(2)在(1)的條件下,設(shè)函數(shù),若上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)是否存在使得函數(shù)在上的最大值是4?若存在,求出的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com