分析 求導(dǎo)函數(shù),即可得函數(shù)f(x)在(0,+∞)上單調(diào)遞增.先判斷函數(shù)f(x)的極小值,再由函數(shù)有四個(gè)零點(diǎn),進(jìn)行等價(jià)轉(zhuǎn)化方程有解問題,去掉絕對值,變成兩個(gè)方程,即可解出b的范圍.
解答 解:∵f(x)=ax+x2-xlna(a>1).
∴求導(dǎo)函數(shù),可得f′(x)=axlna+2x-lna=2x+(ax-1)lna,
由于a>1,
∴l(xiāng)na>0,當(dāng)x>0時(shí),ax-1>0,
∴f′(x)>0,故函數(shù)f(x)在(0,+∞)上單調(diào)遞增.
同理函數(shù)f(x)在(-∞,0)上單調(diào)遞減,
∴f(x)min=f(0)=1,
由|f(x)-b+$\frac{1}$|-3=0,
得:f(x)=b-$\frac{1}$+3,或f(x)=b-$\frac{1}$-3,
∵函數(shù)y=|f(x)-b+$\frac{1}$|-3有四個(gè)零點(diǎn),
∴$\left\{\begin{array}{l}{b-\frac{1}+3>1}\\{b-\frac{1}-3>1}\end{array}\right.$,
∴b-$\frac{1}$>4,
解得:b>2+$\sqrt{5}$,2-$\sqrt{5}$<b<0,
∴b的范圍是(2-$\sqrt{5}$,0)∪(2+$\sqrt{5}$,+∞).
點(diǎn)評 本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的單調(diào)性,考查函數(shù)的零點(diǎn),考查學(xué)生分析解決問題的能力,解題的關(guān)鍵是利用導(dǎo)數(shù)確定函數(shù)的最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{3}{4}$,6) | B. | (-6,$\frac{3}{4}$) | C. | (-∞,-6)∪($\frac{3}{4}$,+∞) | D. | (-∞,-$\frac{3}{4}$)∪(6,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com