分析 由條件、以及|xy-ab|=|y(x-a)+a(y-b)|,再利用三角不等式證得結(jié)論.
解答 證明:∵|x-a|<$\frac{?}{2}$,|y-b|<$\frac{?}{2}$,|a|≤M,|y|≤M,(M,?>0),
∴|xy-ab|=|y(x-a)+a(y-b)|≤|y(x-a)|+|a(y-b)|,
而|y(x-a)|+|a(y-b)|=|y|•|x-a|+|a|•|y-b|≤M•$\frac{?}{2}$+M•$\frac{?}{2}$=M?,
∴|xy-ab|<M?.
點評 本題主要考查絕對值三角不等式的應(yīng)用,利用|xy-ab|=|y(x-a)+a(y-b)|,是證題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若{dn}滿足dn=$\frac{{{b_1}+2{b_2}+3{b_3}+…+n{b_n}}}{1+2+3+…n}$,則{dn}也是等比數(shù)列 | |
B. | 若{dn}滿足dn=$\frac{{{b_1}•2{b_2}•3{b_3}•…•n{b_n}}}{1•2•3•…•n}$,則{dn}也是等比數(shù)列 | |
C. | 若{dn}滿足${d_n}={[{b_1}•(2{b_2})•(3{b_3})•…•(n{b_n})]^{\frac{1}{1+2+…+n}}}$,則{dn}也是等比數(shù)列 | |
D. | 若{dn}滿足${d_n}={[{b_1}•{b_2}^2•{b_3}^3•…•{b_n}^n]^{\frac{1}{1+2+…+n}}}$,則{dn}也是等比數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 11 | C. | 13 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com