【題目】(1)求圓心在直線且與直線相切于點的圓的方程;

(2)求與圓外切于點且半徑為的圓的方程.

【答案】(1)(2).

【解析】試題分析:

(1)由題意可得圓的一條直徑所在的直線方程為,據(jù)此可得圓心,半徑則所求圓的方程為.

(2)圓的標準方程為,得該圓圓心為,半徑為,兩圓連心線斜率.設(shè)所求圓心為,結(jié)合弦長公式可得,.則圓的方程為.

試題解析:

(1)過點且與直線垂直的直線為,

.

即圓心,半徑,

所求圓的方程為.

(2)圓方程化為,得該圓圓心為,半徑為,故兩圓連心線斜率.設(shè)所求圓心為,

,

,.

.

點睛:求圓的方程,主要有兩種方法:

(1)幾何法:具體過程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.

(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應(yīng)該有三個獨立等式.

型】解答
結(jié)束】
20

【題目】如圖所示,平面在以為直徑的,,,為線段的中點,在弧.

(1)求證:平面平面;

(2)求證:平面平面

(3)設(shè)二面角的大小為,的值.

【答案】(1)證明見解析;(2)證明見解析;(3).

【解析】試題分析:

(1)ABC中位線的性質(zhì)可得,平面.由線面平行的判斷定理可得平面.結(jié)合面面平行的判斷定理可得平面.

(2)由圓的性質(zhì)可得,由線面垂直的性質(zhì)可得,據(jù)此可知平面.利用面面垂直的判斷定理可得平面平面.

(3)以為坐標原點,所在的直線為軸,所在的直線為軸,建立空間直角坐標系.結(jié)合空間幾何關(guān)系計算可得平面的法向量,平面的一個法向量,則.由圖可知為銳角,故.

試題解析:

(1)證明:因為點為線段的中點,點為線段的中點,

所以,因為平面,平面,所以平面.

因為,且平面,平面,所以平面.

因為平面,平面,,

所以平面平面.

(2)證明:因為點在以為直徑的上,所以,即.

因為平面,平面,所以.

因為平面,平面,,所以平面.

因為平面,所以平面平面.

(3)解:如圖,以為坐標原點,所在的直線為軸,所在的直線為軸,建立空間直角坐標系.

因為,,所以,.

延長于點.因為

所以,,.

所以,,,.

所以,.

設(shè)平面的法向量.

因為,所以,即.

,則,.

所以.

同理可求平面的一個法向量.

所以.由圖可知為銳角,所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某旅游景點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3.規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費用,用表示出租所有自行車的日凈收入(即一日中出租所以自行車的總收入減去管理費用后的所得).

1)求函數(shù)的解析式及定義域;

2)試問日凈收入最多時每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中,橫、縱坐標均為整數(shù)的點叫做格點,若函數(shù)的圖象恰好經(jīng)過個格點,則稱函數(shù)階格點函數(shù).下列函數(shù)中為一階格點函數(shù)的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.由直線上離圓心最近的點向圓引切線切點為,則線段的長為__________

【答案】

【解析】圓心到直線的距離:,

結(jié)合幾何關(guān)系可得線段的長度為.

型】填空
結(jié)束】
16

【題目】設(shè)是兩個非零平面向量,則有

①若,

②若,

③若,則存在實數(shù)使得

④若存在實數(shù),使得四個命題中真命題的序號為 __________.(填寫所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是平行四邊形所在平面外一點,如果,,.(1)求證:是平面的法向量;

(2)求平行四邊形的面積.

【答案】(1)證明見解析;(2).

【解析】試題分析:

(1)由題意結(jié)合空間向量數(shù)量積的運算法則計算可得,.,,結(jié)合線面垂直的判斷定理可得平面是平面的法向量.

(2)利用平面向量的坐標計算可得,,,,.

試題解析:

(1),

.

,又,平面

是平面的法向量.

(2) ,,

,

, .

型】解答
結(jié)束】
19

【題目】(1)求圓心在直線且與直線相切于點的圓的方程;

(2)求與圓外切于點且半徑為的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計,可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)180°而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)為了達到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時腰的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

⑴當時,求函數(shù)的極值;

⑵若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)是定義域在R上的奇函數(shù),當x0時,fx=x2﹣2x

1)求出函數(shù)fx)在R上的解析式;

2)寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設(shè)備上加工,在每臺A、B設(shè)備上加工一件甲所需工時分別為1,2,加工一件乙設(shè)備所需工時分別為2,1.A、B兩種設(shè)備每月有效使用臺時數(shù)分別為400和500,分別用表示計劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).

(Ⅰ)用列出滿足生產(chǎn)條件的數(shù)學關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

同步練習冊答案