考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應用
分析:(1)y=2x+1,x∈{1,2,3,4,5},可得y∈{3,5,7,9,11};
(2)y=
+1≥1,由于
≥0,即可得出;
(3)變形y=
=
-1,由于x
2≥0,可得
0<≤2,即可得出;
(4)y=-x
2-2x+3=-(x+1)
2+4,函數(shù)f(x)在[-1,2]上單調(diào)遞減,可得f(2)≤f(x)≤f(-1).
解答:
解:(1)y=2x+1,x∈{1,2,3,4,5},∴y∈{3,5,7,9,11};
(2)y=
+1≥1,其值域為[1,+∞);
(3)y=
=
-1,∵x
2≥0,∴
0<≤2,∴-1<y≤1,函數(shù)的值域為(-1,1];
(4)y=-x
2-2x+3=-(x+1)
2+4,
函數(shù)f(x)在[-1,2]上單調(diào)遞減,∴f(2)≤f(x)≤f(-1),即-5≤f(x)≤4,∴函數(shù)f(x)的值域為[-5,4].
點評:本題考查了一次函數(shù)、二次函數(shù)、反比例函數(shù)、根式函數(shù)的單調(diào)性及函數(shù)的值域,考查了計算能力,屬于基礎題.