【題目】關(guān)于不同的直線與不同的平面,有下列六個命題:
①若則;
②若則;
③若且則;
④若且則;
⑤若且則;
⑥若且則;
其中正確命題的序號是__________;
【答案】①③⑤
【解析】
①:根據(jù)線面平行的性質(zhì)定理、面面垂直的判定定理,結(jié)合平行線的性質(zhì)進行判斷即可;
②:根據(jù)線面平行的判定定理進行判斷即可;
③:根據(jù)線面平行的性質(zhì)定理、面面平行的性質(zhì),以及平行線的性質(zhì)進行判斷即可;
④:在正方體中可以找到特例進行判斷即可;
⑤:根據(jù)平面法向量的性質(zhì)和空間向量夾角公式進行判斷即可;
⑥:根據(jù)面面平行的性質(zhì),結(jié)合直線與直線的位置關(guān)系進行判斷即可.
①:因為,所以存在過直線的一個平面與平面交于直線,顯然有,而,所以,而,因此,故本命題是真命題;
②:只有當(dāng),才能推出,故本命題是假命題;
③:因為,所以存在過直線的一個平面與平面交于直線,顯然有,又,所以,因此,所以,故本命題是真命題;
④:在如圖的正方體中:
平面記為平面,平面記為平面,直線記為直線,直線記為直線,顯然符合,但是,(當(dāng)然也可以是異面直線),故本命題是假命題,
⑤:因為,所以平面的法向量分別為:,因為所以為,故本命題是真命題;
⑥:因為且所以直線沒有交點,故兩直線是平行線或異面直線,故本命題是假命題.
故答案為:①③⑤
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機摘下了個蜜柚進行測重,其質(zhì)量分別在,,,,, (單位:克)中,其頻率分布直方圖如圖所示,
(Ⅰ)已經(jīng)按分層抽樣的方法從質(zhì)量落在,的蜜柚中抽取了個,現(xiàn)從這個蜜柚中隨機抽取個。求這個蜜柚質(zhì)量均小于克的概率:
(Ⅱ)以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有個蜜柚等待出售,某電商提出了兩種收購方案:
方案一:所有蜜柚均以元/千克收購;
方案二:低于克的蜜柚以元/個收購,高于或等于克的以元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如表(單位:輛):
轎車 | 轎車 | 轎車 | |
舒適型 | 100 | 150 | |
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
按分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.
(1)求的值;
(2)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把這8輛轎車的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓錐(其中為頂點,為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它的外接球(即頂點在球面上且底面圓周也在球面上)的體積比為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在單位正方體中,點在線段上運動,給出以下三個命題:
①三棱錐的體積為定值; ②二面角的大小為定值;
③異面直線與直線所成的角為定值;
其中真命題有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】時值金秋十月,正是秋高氣爽,陽光明媚的美好時刻。復(fù)興中學(xué)一年一度的校運會正在密鑼緊鼓地籌備中,同學(xué)們也在熱切地期盼著,都想為校運會出一份力。小智同學(xué)則通過對學(xué)校有關(guān)部門的走訪,隨機地統(tǒng)計了過去許多年中的五個年份的校運會“參與”人數(shù)及相關(guān)數(shù)據(jù),并進行分析,希望能為運動會組織者科學(xué)地安排提供參考。
附:①過去許多年來學(xué)校的學(xué)生數(shù)基本上穩(wěn)定在3500人左右;②“參與”人數(shù)是指運動員和志愿者,其余同學(xué)均為“啦啦隊員”,不計入其中;③用數(shù)字1、2、3、4、5表示小智同學(xué)統(tǒng)計的五個年份的年份數(shù),今年的年份數(shù)是6;
統(tǒng)計表(一)
年份數(shù)x | 1 | 2 | 3 | 4 | 5 |
“參與”人數(shù)(y千人) | 1.9 | 2.3 | 2.0 | 2.5 | 2.8 |
統(tǒng)計表(二)
高一(3)(4)班參加羽毛球比賽的情況:
男生 | 女生 | 小計 | |
參加(人數(shù)) | 26 | b | 50 |
不參加(人數(shù)) | c | 20 | |
小計 | 44 | 100 |
(1)請你與小智同學(xué)一起根據(jù)統(tǒng)計表(一)所給的數(shù)據(jù),求出“參與”人數(shù)y關(guān)于年份數(shù)x的線性回歸方程,并預(yù)估今年的校運會的“參與”人數(shù);
(2)學(xué)校命名“參與”人數(shù)占總?cè)藬?shù)的百分之八十及以上的年份為“體育活躍年”.如果該校每屆校運會的“參與”人數(shù)是互不影響的,且假定小智同學(xué)對今年校運會的“參與”人數(shù)的預(yù)估是正確的,并以這6個年份中的“體育活躍年”所占的比例作為任意一年是“體育活躍年”的概率。現(xiàn)從過去許多年中隨機抽取9年來研究,記這9年中“體活躍年”的個數(shù)為隨機變量,試求隨機變量的分布列、期望和方差;
(3)根據(jù)統(tǒng)計表(二),請問:你能否有超過60%的把握認為“羽毛球運動”與“性別”有關(guān)?
參考公式和數(shù)據(jù)一:,,,
參考公式二:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線:,(為參數(shù)),將曲線上的所有點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的后得到曲線,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為。
(1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線交于不同的兩點A,B,點M為拋物線的焦點,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,試判斷函數(shù)的極值情況,并說明理由;
(2)若有兩個極值點,.
①求實數(shù)的取值范圍;
②證明:.注:是自然對數(shù)的底數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com