【題目】已知某地區(qū)中小學(xué)生人數(shù)和近視情況如圖1和圖2所示.為了解該地區(qū)中小學(xué)生的近視形成原因,用分層抽樣的方法抽取2%的學(xué)生作為樣本進(jìn)行調(diào)查.
(1)求樣本容量和抽取的高中生近視人數(shù)分別是多少?
(2)在抽取的名高中生中,平均每天學(xué)習(xí)時(shí)間超過(guò)9小時(shí)的人數(shù)為,其中有12名學(xué)生近視,請(qǐng)完成高中生平均每天學(xué)習(xí)時(shí)間與近視的列聯(lián)表:
平均學(xué)習(xí)時(shí)間不超過(guò)9小時(shí) | 平均學(xué)習(xí)時(shí)間超過(guò)9小時(shí) | 總計(jì) | |
不近視 | |||
近視 | |||
總計(jì) |
(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認(rèn)為高中生平均每天學(xué)習(xí)時(shí)間與近視有關(guān)?
附:,其中.
【答案】(1)36;(2)見(jiàn)解析;(3)見(jiàn)解析.
【解析】試題分析:(1)由條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖求出學(xué)生總數(shù),從而求出抽取的高中生人數(shù)(2)結(jié)合題目信息計(jì)算填表(3)運(yùn)用公式求出的值,作出比較得結(jié)論
解析:(1)由圖1可知,高中生占學(xué)生總數(shù)的,
∴學(xué)生總數(shù)為人,
∴樣本容量為.
∵抽取的高中生人數(shù)為人,
由于近視率為,
∴抽取的高中生近視人數(shù)為人.
(2)列聯(lián)表如下:
平均學(xué)習(xí)時(shí)間不超過(guò)9小時(shí) | 平均學(xué)習(xí)時(shí)間超過(guò)9小時(shí) | 總計(jì) | |
不近視 | 18 | 6 | 24 |
近視 | 24 | 12 | 36 |
總計(jì) | 42 | 18 | 60 |
(3)由列聯(lián)表可知,,
∵,
∴沒(méi)有的把握認(rèn)為高中生平均每天學(xué)習(xí)時(shí)間與近視有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題說(shuō)法中正確的是
A. 對(duì)于實(shí)數(shù),“”是或的充分不必要條件
B. 已知都是整數(shù),則命題“若,則不都是奇數(shù)”是假命題
C. “若,則關(guān)于的方程有實(shí)根”的逆否命題為假命題
D. 命題“全等三角形的面積相等”的否命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下面四個(gè)命題:
①“若,則或”的逆否命題為“若且,則”
②“”是“”的充分不必要條件
③命題“若,則”的逆否命題為真命題
④若為假命題,則、均為假命題,其中真命題個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項(xiàng)點(diǎn))來(lái)處理污水.管道越長(zhǎng),污水凈化效果越好.設(shè)計(jì)要求管道的接口H是AB的中點(diǎn),E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=.
(1)試將污水凈化管道的長(zhǎng)度L表示為的函數(shù),并寫(xiě)出定義域;
(2)當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長(zhǎng)度L.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是雙曲線的右焦點(diǎn),是左支上一點(diǎn),),當(dāng)周長(zhǎng)最小時(shí),則點(diǎn)的縱坐標(biāo)為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】玉山一中籃球體育測(cè)試要求學(xué)生完成“立定投籃”和“三步上籃”兩項(xiàng)測(cè)試,“立定投籃”和“三步上籃”各有2次投籃機(jī)會(huì),先進(jìn)行“立定投籃”測(cè)試,如果合格才能參加“三步上籃”測(cè)試.為了節(jié)約時(shí)間,每項(xiàng)測(cè)試只需且必須投中一次即為合格.小華同學(xué)“立定投籃”和“三步上籃”的命中率均為.假設(shè)小華不放棄任何一次投籃機(jī)會(huì)且每次投籃是否命中相互獨(dú)立.
(1)求小華同學(xué)兩項(xiàng)測(cè)試均合格的概率;
(2)設(shè)測(cè)試過(guò)程中小華投籃次數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,φ<0)的圖象與y軸的交點(diǎn)為(0,1),它的一個(gè)最高點(diǎn)和一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2),(x0,﹣2),
(1)若函數(shù)f(x)的最小正周期為π,求函數(shù)f(x)的解析式;
(2)當(dāng)x∈(x0,x0)時(shí),f(x)圖象上有且僅有一個(gè)最高點(diǎn)和一個(gè)最低點(diǎn),且關(guān)于x的方程f(x)﹣a=0在區(qū)間[,]上有且僅有一解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,分別為,的中點(diǎn),,如圖1.以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
如圖1 如圖2
(1)證明:平面平面;
(2)若平面平面,求直線與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題14分)
如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分別為AD,PB的中點(diǎn).
(Ⅰ)求證:PE⊥BC;
(Ⅱ)求證:平面PAB⊥平面PCD;
(Ⅲ)求證:EF∥平面PCD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com