【題目】(本小題14分)
如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分別為AD,PB的中點.
(Ⅰ)求證:PE⊥BC;
(Ⅱ)求證:平面PAB⊥平面PCD;
(Ⅲ)求證:EF∥平面PCD.
科目:高中數(shù)學 來源: 題型:
【題目】已知某地區(qū)中小學生人數(shù)和近視情況如圖1和圖2所示.為了解該地區(qū)中小學生的近視形成原因,用分層抽樣的方法抽取2%的學生作為樣本進行調(diào)查.
(1)求樣本容量和抽取的高中生近視人數(shù)分別是多少?
(2)在抽取的名高中生中,平均每天學習時間超過9小時的人數(shù)為,其中有12名學生近視,請完成高中生平均每天學習時間與近視的列聯(lián)表:
平均學習時間不超過9小時 | 平均學習時間超過9小時 | 總計 | |
不近視 | |||
近視 | |||
總計 |
(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認為高中生平均每天學習時間與近視有關(guān)?
附:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自2018年10月1日起,中華人民共和國個人所得稅新規(guī)定,公民月工資、薪金所得不超過5000元的部分不必納稅,超過5000元的部分為全月應(yīng)納稅所得額,此項稅款按下表分段累計計算:
全月應(yīng)納稅所得額 | 稅率 |
不超過1500元的部分 | 3 |
超過1500元不超過4500元的部分 | 10 |
超過4500元不超過9000元的部分 | 20 |
超過9000元不超過35000元 | 25 |
如果小李10月份全月的工資、薪金為7000元,那么他應(yīng)該納稅多少元?
如果小張10月份交納稅金425元,那么他10月份的工資、薪金是多少元?
寫出工資、薪金收入元月與應(yīng)繳納稅金元的函數(shù)關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為實數(shù).
(1)若曲線在點處的切線方程為,試求函數(shù)的單調(diào)區(qū)間;
(2)當,,且時,若恒有,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)對一塊長米,寬米的矩形場地ABCD進行改造,點E為線段BC的中點,點F在線段CD或AD上(異于A,C),設(shè)(單位:米),的面積記為(單位:平方米),其余部分面積記為(單位:平方米).
(1)求函數(shù)的解析式;
(2)設(shè)該場地中部分的改造費用為(單位:萬元),其余部分的改造費用為(單位:萬元),記總的改造費用為W單位:萬元),求W最小值,并求取最小值時x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,為邊的中點,將沿直線翻折成.若為線段的中點,則在翻折過程中,下面四個命題中不正確的是( )
A. 是定值
B. 點在某個球面上運動
C. 存在某個位置,使
D. 存在某個位置,使平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面是邊長為4的正方形,側(cè)面為正三角形且二面角為.
(Ⅰ)設(shè)側(cè)面與的交線為,求證:;
(Ⅱ)設(shè)底邊與側(cè)面所成角的為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,x軸正半軸為極軸建立極坐標系中,直線的極坐標方程為.
(1)求出線的極坐標方程及直線的直角坐標方程;
(2)設(shè)點為曲線上的任意一點,求點到直線的距離最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com