如圖,設(shè)、分別是圓和橢圓的弦,且弦的端點在軸的異側(cè),端點與、與的橫坐標分別相等,縱坐標分別同號.
(Ⅰ)若弦所在直線斜率為,且弦的中點的橫坐標為,求直線的方程;
(Ⅱ)若弦過定點,試探究弦是否也必過某個定點. 若有,請證明;若沒有,請說明理由.
(Ⅰ);(Ⅱ)弦必過定點.
解析試題分析:(Ⅰ)由題意得:直線的方程為
,,設(shè)
,將代入檢驗符合題意,
故滿足題意的直線方程為:
(Ⅱ)解法一:由(Ⅰ)得:圓的方程為:分
設(shè)、、、,
∵點在圓上, ∴,………①
∵點在橢圓上, ∴,………②
聯(lián)立方程①②解得:,同理解得:
∴、 ∵弦過定點,
∴且,即,
化簡得
直線的方程為:,即,
由得直線的方程為:,
∴弦必過定點.
解法二:由(Ⅰ)得:圓的方程為:
設(shè)、,
∵圓上的每一點橫坐標不變,縱坐標縮短為原來的倍可得到橢圓,
又端點與、與的橫坐標分別相等,縱坐標分別同號,
∴、
由弦過定點,猜想弦過定點.
∵弦過定點,∴且,即……① ,,
由①得,
∴弦必過定點.
考點:本題主要考查直線、圓、橢圓等基礎(chǔ)知識的綜合應(yīng)用。
點評:本題以直線、圓、橢圓為載體,綜合考查推理論證能力、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、函數(shù)與方程思想.
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線C關(guān)于軸對稱,它的頂點在坐標原點,并且經(jīng)過點
(1)求拋物線C的標準方程
(2)直線過拋物線的焦點F,與拋物線交于A、B兩點,線段AB的中點M的橫坐標為3,求弦長以及直線的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)已知點分別為橢圓的左、右焦點,點為橢圓上任意一點,到焦點的距離的最大值為.
(1)求橢圓的方程。
(2)點的坐標為,過點且斜率為的直線與橢圓相交于兩點。對于任意的是否為定值?若是求出這個定值;若不是說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)如圖,直線l:y=x+b與拋物線C:x2=4y相切于點A.
(1)求實數(shù)b的值;
(2)求以點A為圓心,且與拋物線C的準線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)設(shè)橢圓:的左、右焦點分別為,上頂點為,過點與垂直的直線交軸負半軸于點,且.
(1)求橢圓的離心率; (2)若過、、三點的圓恰好與直線:相切,
求橢圓的方程;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)
已知橢圓的中心在坐標原點,長軸長為,離心率,過右焦點的直線交
橢圓于,兩點:
(Ⅰ)求橢圓的方程;(Ⅱ)當直線的斜率為1時,求的面積;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線的離心率,過的直線到原點的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的點C,D且C,D都在以B為圓心的圓上,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓過橢圓的兩焦點,與橢圓有且僅有兩個與圓相切 ,與橢圓相交于兩點記
(1)求橢圓的方程
(2)求的取值范圍;
(3)求的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)拋物線的頂點在坐標原點,焦點在軸的負半軸上,過點作直線與拋物線交于A,B兩點,且滿足,
(1)求拋物線的方程
(2)當拋物線上的一動點P從A運動到B時,求面積的的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com