4.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若Sn=$\frac{n}{m},{S_m}=\frac{m}{n}({m≠n})$,則Sm+n的取值范圍是(4,+∞).

分析 首先設(shè)出等差數(shù)列的前n項(xiàng)和Sn=An2+Bn,由已知Sn=$\frac{n}{m},{S_m}=\frac{m}{n}({m≠n})$,列式求出A,B,代入Sm+n=$\frac{(m+n)^{2}}{mn}$,利用基本不等式得到Sn+m的范圍,則答案可求.

解答 解:∵{an}是等差數(shù)列,
∴設(shè)Sn=An2+Bn,
∵Sn=$\frac{n}{m},{S_m}=\frac{m}{n}({m≠n})$,
∴An2+Bn=$\frac{n}{m}$,Am2+Bm=$\frac{m}{n}$,
故B=0,A=$\frac{1}{mn}$.
∴Sm+n=$\frac{(m+n)^{2}}{mn}$>$\frac{4mn}{mn}$=4,
∴Sm+n的取值范圍是(4,+∞).
故答案為:(4,+∞).

點(diǎn)評(píng) 本題考查了等差數(shù)列的前n項(xiàng)和,解答此題的關(guān)鍵是明確等差數(shù)列前n項(xiàng)和的形式,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某幾何體的展開圖如圖所示(其中△VAB,△V1AC,△V2BC,△ABC都是邊長(zhǎng)為2的等邊三角形).將它沿AB、BC、AC折疊還原為原幾何體,使得V、V1、V2重合于點(diǎn)V.
(1)求原幾何體的表面積;
(2)若M為AB中點(diǎn),求在原幾何體中直線VM與直線BC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.一個(gè)圓錐的底面半徑為2cm,高為4cm,內(nèi)接圓柱的軸截面為正方形,則圓柱的體積為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓的對(duì)稱軸為坐標(biāo)軸,離心率e=$\frac{\sqrt{3}}{2}$,短軸長(zhǎng)為6,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知點(diǎn)P為圓C1:(x-3)2+(y-4)2=4上的動(dòng)點(diǎn)
(1)若點(diǎn)Q為直線l:x+y-1=0上動(dòng)點(diǎn),求|PQ|的最小值與最大值;
(2)若M為圓C2:(x+1)2+(y-1)2=4上動(dòng)點(diǎn),求|PM|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如果用反證法證明“數(shù)列{an}的各項(xiàng)均小于2”,有下列四種不同的假設(shè):
①數(shù)列{an}的各項(xiàng)均大于2;          ②數(shù)列{an}的各項(xiàng)均大于或等于2;
③數(shù)列{an}中存在一項(xiàng)ak,ak≥2;   ④數(shù)列{an}中存在一項(xiàng)ak,ak>2.
其中正確的序號(hào)為③.(填寫出所有假設(shè)正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若構(gòu)成教室墻角的三個(gè)墻面分別記為α,β,γ,交線分別記為BA,BC,BD,教室內(nèi)一點(diǎn)P到三墻面α,β,γ 的距離分別為3m,4m,1m,則點(diǎn)P與墻角B的距離為$\sqrt{26}$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知f(x)=$\left\{\begin{array}{l}{f(x-3),x>0}\\{2x-{x}^{3},x≤0}\end{array}\right.$,則f[f(5)]=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓方程:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)離心率e=$\frac{\sqrt{2}}{2}$有頂點(diǎn)B1(0,1).
(1)求橢圓標(biāo)準(zhǔn)方程.
(2)若直線l過(guò)橢圓的右焦點(diǎn)F2,且l⊥x軸,交橢圓于A、B兩點(diǎn),求|AB|的長(zhǎng).
(3)若直線l過(guò)橢圓的右焦點(diǎn)F2的任一直線,交橢圓于A、B兩點(diǎn),S($\frac{5}{4}$,0),求證:$\overrightarrow{SA}$•$\overrightarrow{SB}$為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案