已知曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與軸的交點(diǎn)是,是曲線上一動點(diǎn),求的最大值.

(1)(2)

解析試題分析:解:(Ⅰ)曲線的極坐標(biāo)方程可化為,
,
所以曲線的直角坐標(biāo)方程為           3分
(Ⅱ)將直線l的參數(shù)方程化為直角坐標(biāo)方程,得,       4分
,得,即點(diǎn)的坐標(biāo)為(2,0). 又曲線為圓,圓的圓心坐標(biāo)為(0,1),
半徑,則,            6分
所以.即的最大值為       7分
考點(diǎn):直線與圓關(guān)系
點(diǎn)評:主要是考查了直線與圓的位置關(guān)系的綜合運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l的參數(shù)方程: (t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2sin(θ+).
(1)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的軸的正半軸重合.直線的參數(shù)方程是(為參數(shù)),曲線C的極坐標(biāo)方程為
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C相交于M,N兩點(diǎn),求M,N兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,圓的極坐標(biāo)方程為.現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系.
(Ⅰ)求圓的直角坐標(biāo)方程;
(Ⅱ)若圓上的動點(diǎn)的直角坐標(biāo)為,求的最大值,并寫出取得最大值時(shí)點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為為參數(shù))曲線C2的參數(shù)方程為為參數(shù))在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=與C1,C2各有一個(gè)交點(diǎn).當(dāng)=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)=時(shí),這兩個(gè)交點(diǎn)重合.
(I)分別說明C1,C2是什么曲線,并求出a與b的值;
(II)設(shè)當(dāng)=時(shí),l與C1,C2的交點(diǎn)分別為A1,B1,當(dāng)=-時(shí),l與C1,C2的交點(diǎn)為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線的參數(shù)方程為(t為參數(shù)),若以直角坐標(biāo)系點(diǎn)為極點(diǎn),軸為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為ρ=
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線是什么曲線;
(2)若直線與曲線交于A、B兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,曲線為參數(shù))。在以為原點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,射線為,與的交點(diǎn)為,與除極點(diǎn)外的一個(gè)交點(diǎn)為。當(dāng)時(shí),。
(1)求的直角坐標(biāo)方程;
(2)設(shè)軸正半軸交點(diǎn)為,當(dāng)時(shí),設(shè)直線與曲線的另一個(gè)交點(diǎn)為,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知在直角坐標(biāo)系中,圓錐曲線的參數(shù)方程為為參數(shù)),定點(diǎn),是圓錐曲線的左,右焦點(diǎn).
(Ⅰ)以原點(diǎn)為極點(diǎn)、軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點(diǎn)且平行于直線的直線的極坐標(biāo)方程;
(Ⅱ)在(I)的條件下,設(shè)直線與圓錐曲線交于兩點(diǎn),求弦的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

((本小題滿分10分)
選修4—4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為為參數(shù)),曲線C的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正方向建立直角坐標(biāo)系,點(diǎn),直線與曲線C交于A、B兩點(diǎn).
(1)寫出直線的極坐標(biāo)方程與曲線C的普通方程;
(2) 線段MA,MB長度分別記為|MA|,|MB|,求的值.

查看答案和解析>>

同步練習(xí)冊答案