在平面直角坐標(biāo)系中,曲線為參數(shù))。在以為原點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,射線為,與的交點(diǎn)為,與除極點(diǎn)外的一個(gè)交點(diǎn)為。當(dāng)時(shí),
(1)求,的直角坐標(biāo)方程;
(2)設(shè)軸正半軸交點(diǎn)為,當(dāng)時(shí),設(shè)直線與曲線的另一個(gè)交點(diǎn)為,求。

(1)的直角坐標(biāo)方程是,的直角坐標(biāo)方程是.(2)

解析試題分析:(1)由,所以的直角坐標(biāo)方程是--2分
由已知得的直角坐標(biāo)方程是,
當(dāng)時(shí)射線與曲線交點(diǎn)的直角坐標(biāo)為,         3分
的直角坐標(biāo)方程是.①          5分
(2)聯(lián)立不是極點(diǎn).     6分
又可得, 的參數(shù)方程為②         8分
將②帶入①得,設(shè)點(diǎn)的參數(shù)是,則
          10分
考點(diǎn):本題考查了極坐標(biāo)與直角坐標(biāo)系的互化及參數(shù)的運(yùn)用
點(diǎn)評(píng):極坐標(biāo)方面主要考查極坐標(biāo)方程和直角坐標(biāo)方程的互化、常見(jiàn)曲線的極坐標(biāo)方程間的簡(jiǎn)單應(yīng)用.在參數(shù)方程方面主要考查了參數(shù)方程所表示的曲線類(lèi)型、參數(shù)法求最值的思想及平面幾何中直線與圓等的位置關(guān)系問(wèn)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,曲線的極坐標(biāo)方程為
(1)寫(xiě)出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;
(2)若為曲線上的動(dòng)點(diǎn),求中點(diǎn)到直線為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)系中,已知圓的圓心,半徑 
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)若,直線的參數(shù)方程為為參數(shù)),直線交圓兩點(diǎn),求弦長(zhǎng)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與軸的交點(diǎn)是,是曲線上一動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)系中,已知點(diǎn)P為圓ρ2+2ρsinθ﹣7=0上任一點(diǎn).求點(diǎn)P到直線ρcosθ+ρsinθ﹣7=0的距離的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)中,已知圓經(jīng)過(guò)點(diǎn),圓心為直線與極軸的交點(diǎn),求圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)中,已知圓經(jīng)過(guò)點(diǎn),圓心為直線與極軸的交點(diǎn),求圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分) 在極坐標(biāo)中,已知圓經(jīng)過(guò)點(diǎn),圓心為直線與極軸的交點(diǎn),求圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)如圖,已知,分別是兩邊上的動(dòng)點(diǎn)。
(1)當(dāng)時(shí),求的長(zhǎng);
(2)、長(zhǎng)度之和為定值4,求線段最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案