求下列函數(shù)的值域:y=
x2-2x+2
2x-1
(x>
1
2
).
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分離常數(shù),利用基本不等式求出函數(shù)的最值,即可求出值域
解答: 解:∵x>
1
2

∴x-
1
2
>0.
∴y=
x2-2x+2
2x-1
=
1
2
[
(x-
1
2
)2-(x-
1
2
)+
5
4
x-
1
2
]=
1
2
[(x-
1
2
)+
5
4
x-
1
2
-1]≥
1
2
×[2
(x-
1
2
)•
5
4
(x-
1
2
)
-1]=
1
2
×(
5
-1)=
5
2
-
1
2
,
∴函數(shù)值域為[
5
2
-
1
2
,+∞)
點評:本題考查了函數(shù)的值域的求法,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個算法流程圖,則輸出的x的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只蜜蜂在一個棱長為5的正方體內(nèi)自由飛行,若蜜蜂在飛行過程中始終保持與正方體6個表面的距離均大于2,稱其為“安全飛行”,則蜜蜂“安全飛行”的概率為( 。
A、
1
25
B、
8
125
C、
1
125
D、
27
125

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解甲、乙兩廠的產(chǎn)品質(zhì)量,分別從兩廠生產(chǎn)的產(chǎn)品中各隨機抽取10件,測量產(chǎn)品中某種元素的含量(單位:毫克),其測量數(shù)據(jù)的莖葉圖如圖所示:規(guī)定:當(dāng)產(chǎn)品中此種元素含量大于18毫克時,認(rèn)定該產(chǎn)品為優(yōu)等品.
(1)試比較甲、乙兩廠生產(chǎn)的產(chǎn)品中該種元素含量的平均值的大小;
(2)從乙廠抽出上述10件產(chǎn)品中,隨機抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+2ax+2,x∈[-5,5]
(1)當(dāng)a=-1時,求f(x)的最值;   
(2)求f(x)的最小值;
(3)當(dāng)f(x)在區(qū)間[-5,5]上為單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2+bx+c>0的解集為{x|-3<x<4},求不等式bx2+2ax-c-3b<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知長方體AC1的長、寬、高分別為5、4、3,現(xiàn)有一甲殼蟲從A點出發(fā)沿長方體表面爬到C1處獲取食物,它爬行路線的路程最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x+2|
+x
(1)判斷函數(shù)f(x)在(-2,-1)上的單調(diào)性并加以證明;
(2)若函數(shù)g(x)=f(x)-2|x|-m有四個不同的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2
sin(x-
π
3
)得圖象的一條對稱軸是直線( 。
A、x=-
π
2
B、x=
π
2
C、x=-
π
6
D、x=
π
6

查看答案和解析>>

同步練習(xí)冊答案