5.某類題庫中有9道題,其中5道甲類題,每題10分,4道乙類題,每題5分,現(xiàn)從中任意選取三道題組成問卷,記隨機變量X為此問卷的總分.
(Ⅰ)求X的分布列;
(Ⅱ)求X的數(shù)學期望E(X).

分析 (Ⅰ)由已知得X的可能取值為15,20,25,30,分別求出相應的概率,由此能求出X的分布列.
(Ⅱ)由X的分布列能求出X的數(shù)學期望E(X).

解答 解:(Ⅰ)由已知得X的可能取值為15,20,25,30,
P(X=15)=$\frac{{C}_{4}^{3}}{{C}_{9}^{3}}$=$\frac{4}{84}$,
P(X=20)=$\frac{{C}_{5}^{1}{C}_{4}^{2}}{{C}_{9}^{3}}$=$\frac{30}{84}$.
P(X=25)=$\frac{{C}_{5}^{2}{C}_{4}^{1}}{{C}_{9}^{3}}$=$\frac{40}{84}$,
P(X=30)=$\frac{{C}_{5}^{3}}{{C}_{9}^{3}}$=$\frac{10}{84}$.
∴X的分布列為:

 X 15 20 25 30
 P $\frac{4}{84}$ $\frac{30}{84}$ $\frac{40}{84}$ $\frac{10}{84}$
(Ⅱ)X的數(shù)學期望E(X)=$15×\frac{4}{84}+20×\frac{30}{84}+25×\frac{40}{84}+30×\frac{10}{84}$=$\frac{70}{3}$.

點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.某公司生產(chǎn)一批A產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元.該公司通過設備升級,生產(chǎn)這批A產(chǎn)品所需原材料減少了x噸,且每噸原材料創(chuàng)造的利潤提高0.5x%;若將少用的x噸原材料全部用于生產(chǎn)公司新開發(fā)的B產(chǎn)品,每噸原材料創(chuàng)造的利潤為12(a-$\frac{13}{1000}$x)萬元(a>0).
(Ⅰ)若設備升級后生產(chǎn)這批A產(chǎn)品的利潤不低于原來生產(chǎn)該批A產(chǎn)品的利潤,求x的取值范圍.
(Ⅱ)若生產(chǎn)這批B產(chǎn)品的利潤始終不高于設備升級后生產(chǎn)這批A產(chǎn)品的利潤,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{{x}^{2}-(a+3)x+3a}$+$\frac{4}{x-3}$(a∈R),求f(x)的定義城.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.總體X的均值μ和方差σ2均存在,但是未知,且σ2>0,X1、X2,…,Xn為X的一個樣本,求μ,σ2的矩估計量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=xlnx,g(x)=$\frac{a-2x}{x}$,a≠0,其中f′(x)是f(x)的導函數(shù).
(1)求函數(shù)h(x)=f′(x)+g(x)的單調(diào)區(qū)間;
(2)求證:對任意n∈N*,均有$\frac{{e}^{n}}{n!}≤{e}^{1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}}<en$.(e為自然對數(shù)的底數(shù),n!=1×2×3×…×n)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知等比數(shù)列{an}的公比q>1.且2(an+an+2)=5an+1,n∈N*
(I)求q的值;
(Ⅱ)若a32=a10,求數(shù)列{$\frac{{a}_{n}}{{3}^{n}}$}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.判斷下列函數(shù)在定義域內(nèi)的單調(diào)性:①y=1.1x ②y=($\frac{1}{4}$)x ③y=4-x ④y=1nx    ⑤y=x${\;}^\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知拋物線的頂點在原點,焦點F在x軸正半軸上,且過點P(2,2),過F的直線交拋物線于A(x1,y1),B(x2,y2)兩點.
(1)求拋物線的方程;
(2)設直線l是拋物線的準線,求證:以AB為直徑的圓與準線l相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,以原點O為圓心,以橢圓C的長半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的標準方程;
(2)過橢圓C的右焦點F作斜率為-$\frac{\sqrt{2}}{2}$的直線l交橢圓C于A、B兩點,且$\overrightarrow{OA}$+$\overrightarrow{OD}$=$\overrightarrow{BO}$,又點D關于坐標原點O的對稱點為點E,試問點A,B,D,E四點是否共圓?若是,求出該圓的標準方程;若不是,試說明理由.

查看答案和解析>>

同步練習冊答案