由曲線y=x2-2x與直線x+y=0所圍成的封閉圖形的面積為
 
考點(diǎn):定積分在求面積中的應(yīng)用
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:聯(lián)立方程組求出積分的上限和下限,結(jié)合積分的幾何意義即可得到結(jié)論.
解答: 解:由曲線y=x2-2x與直線x+y=0,得x2-x=0,解得x=0或x=1,
則根據(jù)積分的幾何意義可知所求的幾何面積S=
1
0
(-x-x2+2x)dx
=(-
1
3
x3+
1
2
x
2
)
|
1
0
=
1
6
,
故答案為:
1
6
點(diǎn)評:本題主要考查積分的應(yīng)用,作出對應(yīng)的圖象,求出積分上限和下限,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(
π
2
+a)=
1
3
,則cos2a的值為( 。
A、
1
3
B、-
1
3
C、
7
9
D、-
7
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的圖象過點(diǎn)(2,3),則函數(shù)y=f(x+3)-5一定過點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:復(fù)數(shù)z=
1+i
i
在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于第四象限;命題q:?x>0使得2-x=ex,則下列命題中為真命題的是(  )
A、p∧q
B、(¬p)∧q
C、p∧(¬q)
D、(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α、β為兩個(gè)不同的平面,m、n為兩條不同的直線,則a⊥b的一個(gè)充分條件是(  )
A、a⊥α,b∥β,α⊥β
B、a⊥α,b⊥β,α∥β
C、a?α,b⊥β,α∥β
D、a?α,b∥β,α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=1+2sin2
x
4
的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列 {an}中,an>0(n∈N*),a1a3=4,且 a3+1是 a2和 a4的等差中項(xiàng),若bn=log2an+1
(1)求數(shù)列 {bn}的通項(xiàng)公式;
(2)若數(shù)列 {cn}滿足 cn=an+1.bn,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,
1
an+1
=
1
2an
,n∈N*,{an}的前項(xiàng)和為Sn,則(  )
A、Sn=2-(
1
2
n-1
B、Sn=2-(
1
2
n
C、Sn=2n-1
D、Sn=2n-1-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將平面直角坐標(biāo)系中的格點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))按如下規(guī)則標(biāo)上數(shù)字標(biāo)簽:原點(diǎn)處標(biāo)0,點(diǎn)(1,0)處標(biāo)1,點(diǎn)(1,-1)處標(biāo)2,點(diǎn)(0,-1)處標(biāo)3,點(diǎn)(-1,-1)處標(biāo)4,…,點(diǎn)(0,1)處標(biāo)7,…,依此類推,則標(biāo)簽20152的格點(diǎn)的坐標(biāo)為(  )
A、(1008,1007)
B、(1007,1006)
C、(1007,1005)
D、(1006,1005)

查看答案和解析>>

同步練習(xí)冊答案