20.△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,如果a、b、c成等差數(shù)列,∠B=30°,△ABC的面積為2-$\sqrt{3}$,那么b=$\frac{2\sqrt{3}}{3}$.

分析 根據(jù)等差中項(xiàng)的性質(zhì)可知2b=a+c.平方后整理得a2+c2=4b2-2ac.利用三角形面積求得ac的值,進(jìn)而把a(bǔ)2+c2=4b2-2ac.代入余弦定理求得b的值.

解答 解:∵a,b,c成等差數(shù)列,
∴2b=a+c.
平方得a2+c2=4b2-2ac.
又△ABC的面積為2-$\sqrt{3}$,且∠B=30°,
故由S=$\frac{1}{2}$acsinB=$\frac{1}{2}$ac•sin30°=$\frac{1}{4}$ac=2-$\sqrt{3}$,
得ac=8-4$\sqrt{3}$,
∴a2+c2=4b2-16+8$\sqrt{3}$.
由余弦定理
cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{3^{2}-16+8\sqrt{3}}{16-8\sqrt{3}}$=$\frac{\sqrt{3}}{2}$.
解得b=$\frac{2\sqrt{3}}{3}$.
故答案為:$\frac{2\sqrt{3}}{3}$.

點(diǎn)評 本題主要考查了解三角形的問題.解題過程中常需要正弦定理,余弦定理,三角形面積公式以及勾股定理等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.雙曲線兩條漸近線的夾角為60°,該雙曲線的離心率為( 。
A.$\frac{2}{3}\sqrt{3}$或2B.$\frac{2}{3}\sqrt{3}$或$\sqrt{2}$C.$\sqrt{3}$或2D.$\sqrt{3}$或$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)a>0,b>0,2c>a+b,求證:
(1)c2>ab;
(2)c-$\sqrt{{c}^{2}-ab}$<a<c+$\sqrt{{c}^{2}-ab}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某學(xué)校進(jìn)行體檢,現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機(jī)抽取50人進(jìn)行統(tǒng)計(jì)(已知這50人身材介于155cm到195cm之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],并按此分組繪制如下圖所示的頻率分布直方圖,其中,第六組和第七組還沒有繪制完成,已知第一組與第八組人數(shù)相同,第七組的人數(shù)為3人.
(1)求第六組的頻率;
(2)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中第六組至第八組學(xué)生身高的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.?dāng)?shù)列{an}滿足Sn=2n+2an(n∈N*).
(1)計(jì)算a1、a2、a3,a4
(2)有同學(xué)猜想an=2-2α;請根據(jù)你的計(jì)算確定α的值,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=sin(2x+$\frac{π}{3}$),x∈[0,2π]的單調(diào)減區(qū)間是[$\frac{π}{12}$,$\frac{7π}{12}$]和[$\frac{13π}{12}$,$\frac{19π}{12}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$f(x)=3sin(ωx-\frac{π}{6})$(ω>0)和g(x)=2cos(2x+ϕ)+1(0<ϕ<$\frac{π}{2}$)的圖象的對稱軸完全相同.若${x_1},{x_2}∈[0,\frac{π}{2}]$,則f(x1)-g(x2)的取值范圍是[-$\frac{7}{2}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.cos23°sin53°-sin23°cos53°=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在四棱錐P-ABCD中,底面ABCD為邊長為a的菱形,∠BAD=60°,△PAD為正三角形,平面PAD⊥平面ABCD,E、H分別為BC、AD的中點(diǎn),F(xiàn)在PC邊上,且PF=2FC.
(1)求證:PH⊥底面ABCD;
(2)求證:PA∥平面DEF;
(3)求三棱錐C-DEF的體積.

查看答案和解析>>

同步練習(xí)冊答案